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Abstract 

Firefighters need to gain information from both inside and outside of buildings in first response emergency scenarios. 
For this purpose, drones are beneficial. This paper presents an elicitation study that showed firefighters’ desires to 
collaborate with autonomous drones. We developed a Human–Drone interaction (HDI) method for indicating a target 
to a drone using 3D pointing gestures estimated solely from a monocular camera. The participant first points to a 
window without using any wearable or body-attached device. Through the drone’s front-facing camera, the drone 
detects the gesture and computes the target window. This work includes a description of the process for choosing 
the gesture, detecting and localizing objects, and carrying out the transformations between coordinate systems. Our 
proposed 3D pointing gesture interface improves on 2D interfaces by integrating depth information with SLAM and 
solving ambiguity with multiple objects aligned on the same plane in a large-scale outdoor environment. Experi-
mental results showed that our 3D pointing gesture interface obtained average F1 scores of 0.85 and 0.73 for preci-
sion and recall in simulation and real-world experiments and an F1 score of 0.58 at the maximum distance of 25 m 
between the drone and building.
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Introduction
In emergency scenarios such as fires, a group of profes-
sionals called first responders arrives on the scene to 
gather as much information as possible about the current 
situation. In particular, certain pieces of information are 
critical to evaluating the situation, many of which can 
only be obtained from an aerial view. One of our first 
steps was to talk to the firefighters at the Kobe Fire Acad-
emy and determine what their primary needs were. We 
found that certain information, e.g., apartment type, gas 

leaks, the presence of living beings, could help improve 
the chances of a better outcome if found more quickly.

A first responder sometimes uses manually controlled 
unmanned aerial vehicles (UAVs) to get a top view of the 
situation, but it is tough for a UAV pilot to navigate inside 
a building without direct visual contact. Autonomous 
UAVs can potentially perform this type of task.

Before a UAV gets inside a building, a point of entry, 
like a window, has to be chosen. Human decisions should 
guide this window choice because the information gath-
ered will first come from that entrance area, and it is up 
to the first responder team to access the situation and 
choose which area to investigate first.

The present work involves an outdoor environment, 
where a UAV should understand which window is 
selected by the human so that the UAV can go inside 
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and perform a given task. Controlling a UAV in inter-
active systems depends on the available resources and 
requirements of the task at hand. For example, wear-
able devices might not be the optimal solution for long 
jobs where they would run out of batteries [1]. Other 
options could be the traditional Command-Line [2]: 
every time the UAV required a human input in the 
middle of a task, they could provide it by typing a com-
mand. However, the downsides to this are clear, as the 
human might need to interrupt their activities to com-
municate with the UAV. One possible solution that 
could mitigate the need for wearable devices and pre-
vent significant interruptions would be the use of ges-
ture input.

The process of associating a gesture to a particular 
action or function of the system is not trivial, because 
it must take into account several factors such as ergo-
nomics, intuitiveness, and objectivity [3, 4]. In past 
works, we analyzed which gesture fits best the pur-
posed scenario, using our Gesture Development Pro-
cess [5], validating it in general tasks and with a diverse 
group of users [6], and an elicitation study with the tar-
geted users [7].

The most basic feature of Human–Drone interac-
tion is a user or system signaling a UAV to change its 
position [8]. The present work presents a system that 
enables UAVs equipped with a monocular camera to 
determine which window of a building was selected 
by a human user, in large scale, indoors or outdoors. 
Figure  1 illustrates the purpose. We developed two 
applications: one using only 2D information (no depth 
information), and another using 3D information cap-
tured from a point cloud obtained from a monocu-
lar simultaneous localization and mapping (SLAM) 
system. Experimental evaluation is made available in 

simulation and also in a real-world setting. The list of 
contributions include:

•	 Human–Drone interaction elicitation study on fire-
fighters’ experience in a first-response situation to 
discover a suitable gesture.

•	 Development of a monocular-based 3D pointing 
gesture interface proposed application. We include 
object recognition and modify ORB-SLAM’s out-
put to include the current frame’s respective point 
cloud to precisely estimate the target location in a 
large-scale environment.

•	 Verification and validation of our proposed method 
on simulated and real-world (large-scale) fire bri-
gade scenario. We also provide a dataset of pointing 
to windows outdoors.

Research background
Defining the pointing gesture
In the present work, we use the gesture for “Select” 
previously presented in [5] in a very specific domain of 
application: as a collaboration interface between UAVs 
and Firefighters. To double-check that the same gesture 
could be used for “Select” in this particular environ-
ment, we performed an elicitation study [7] with seven 
Firefighters.

The first part of the study consisted of a UAV hovering 
next to a building in different positions. Each participant 
was requested to signal the UAV to enter a window. In 
the second part of the Study, an interview was conducted 
with each firefighter. We collected their opinions on 
future applications of drones in firefighting and interfaces 
for drones control systems.

All participants wished to collaborate using natural 
interactions with an autonomous UAV that could quickly 
arrive at the fire scene and gather useful data for first 
responders such as building type, fire source, type of fire, 
and victims present. Results (Fig. 2) showed that all fire-
fighters used a pointing gesture and voice commands to 
indicate a specific window within an average of 3 s.

Given the results of this elicitation study the author 
became interested in building a gesture interface that 
used Pointing Gestures to indicate a window to a drone. 
Besides the scenario here presented, there are many pos-
sible scenarios where drone systems would benefit from 
interaction with humans in the course of a task. This 
work aims to provide guidance for natural Human–
Drone interactions when relying solely on the UAV cam-
era, without external devices, in large-scale interaction 
scenarios. Pointing Gestures are studied as a means to 
estimate the correct Target Object.

Fig. 1  UAV selects the pointed window. This collaboration scenario 
could enable first responders to gather more information about a 
specific location
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Related work
Gesture recognition [9] has been studied with various 
devices such as RGB cameras, depth cameras [10, 11], 
radar-based sensors [12], capacitive sensors [13], sen-
sorized gloves [14], electromyography sensors [15–18], 
Wi-Fi [19] and others. Each device has its own limita-
tions, and in this section we will summarize the use of 
these devices on detecting pointing gestures and/or robot 
control.

The work of Tolgyessy [20] investigates the use of 
pointing gestures to give target locations to Roomba-
like robots. It uses an RGBD sensor (Kinect) mounted 
on a 2-DoF robot to interpret the pointing gesture from 
a person standing 2–3 m from the setup. They used 
third-party software to get the body points from the 
user. In order to choose which data to use to determine 
the pointing gesture, they investigated combinations of 
wrist-elbow, wrist-shoulder, and wrist-head. Wrist-elbow 
gave a better result in terms of accuracy. The limitations 
were that the user was always facing the robot, distance 
was limited (up to 3 m), and the user had to hold the 
pointing gesture with one hand while the other hand per-
formed another gesture that enabled the robot to act on 
the pointing gesture. The user also had to point to a place 
inside the field-of-view (FoV) of the robot, which limited 

the pointed places to very short distances in the indoor 
environment. The system was not suitable for outdoor 
use because of Kinect’s hardware limitations.

The work of DelPreto [16] presents a gesture-based 
interface for human-robot interaction using wearable 
sensors. “A real-time clustering algorithm processes 
streaming data while only maintaining a key subset of 
observations. This building block is used to adaptively 
threshold muscle and motion signals, detecting arm stiff-
ening and fist clenching from EMG signals and rotation 
gestures from inertial measurement unit (IMU) signals. 
These predictions are fused with IMU processing to 
interpret left, right, up, or down gestures.” In this work, 
participants used the interface for real-time robot con-
trol by remotely piloting a UAV around obstacles. Some 
of the sensors used here required the participants to be 
connected through cables to a data acquisition (DAQ) 
device, thus restricting the applicability of this means 
outside of a controlled environment. This means of inter-
action also won’t provide enough input to infer location 
to a robot; therefore, it cannot be used to detect pointing 
gestures.

The work of Liu [21] presents a method for automati-
cally detecting the teacher’s pointing gesture on the elec-
tronic whiteboard. They detect pointing gestures inside 

Fig. 2  An elicitation study with firefighters showed that pointing gesture and voice commands were unanimously used to specify windows to a 
UAV



Page 4 of 19Medeiros et al. Robomech J            (2021) 8:14 

an indoor short-ranged environment, like a classroom. 
They use third-party software to identify body poses, 
and image form filtering to identify the whiteboard, if the 
hand point is inside the whiteboard, the system identifies 
the teacher pointing out the whiteboard. This system is 
limited to an indoor environment where the location of 
the individual is very near the whiteboard (target) so that 
they overlap.

The work of Gromov [22] uses a pointing gesture to 
control UAV movement until a desired location. The 
experiment takes place indoors on a small environment. 
This system uses an IMU sensor on one arm and the 
other arm holds a button to control the UAV’s move-
ments. It is not possible to point directly to the desired 
location. The change in the user’s arm position indicates 
change in the UAV’s positioning.

The work of Chen [23] uses a model of an environment 
to plan the trajectory of an UAV, using Augmented Real-
ity (AR). Chen’s system requires users to import a 3D 
scene for performing their desired drone trajectory plan, 
therefore the environment must be previously known. It 
also requires a planar surface to place the 3D model of 
the scene, before the trajectory planning can start. The 
user must move the mobile device around the model to 
define its trajectory. The need for a direct manipulation 
of a tablet or smartphone is another constraint in this 
work.

The work of Chen [24] uses mobile AR devices to allow 
for UAV position control. The user drags a UAV’s model 
cast shadow or a slider bar on the touchscreen to plan 
the UAV’s trajectory. Chen L.’s system uses an ad-hoc 
tracking system with QR code-based visual markers on 
the floor. Therefore the drone flying area is quite limited 
due to the need of visual markers on the floor. The sys-
tem Can be used in indoor or outdoor environments but 
requires the total attention of the user to a mobile device, 
occupying user’s both hands.

There are multiple studies that research the use of ges-
tures to navigate a UAV [16, 20, 22, 25]. However, we 

investigate the collaboration between UAVs and humans 
to relieve human task load and reduce UAV’s error by 
processing periodical human-input. This collaboration 
takes shape in an outdoor environment, where long dis-
tances make the use of depth cameras difficult due to 
hardware limitations. So the present work is focused not 
only on short-scaled interactions (like [11, 16, 20–22]), 
where the user, gesture capturing device (camera) and 
interaction targets are within 2 m of each other. But also 
on large-scaled interactions where larger distances are 
observed either between user-camera or user-targets. 
Moreover, lidars like Hokuyo [26] cannot gather enough 
information on the pointing gesture and building’s win-
dows simultaneously. Furthermore, we cannot use wear-
able devices like electromyography sensors to determine 
where a user is pointing, or mobile devices like smart-
phone and tablets, as this could also impair dexterity or 
task performance in a firefighting environment. The use 
of visual markers on a first response scenario is also unre-
alistic given the time constraints. Therefore, the present 
work focuses on using a monocular camera to produce 
a system that can enable correct window selection deci-
sions in indoor and outdoor environments without using 
external devices, even on low-cost UAVs. Table 1 shows a 
comparison between the present and related work.

Methods
We explain the proposed pointing gesture detection 
methods in this section. We define a pointing gesture as 
“a gesture in which the user extends their arm away from 
their body, towards the desired target object (window) to 
be selected.” In previous efforts [7], we built a naive solu-
tion to detect pointed objects, that solution had limita-
tions resulting from the lack of depth information usage. 
In this work, we address such limitations by integrating 
depth information from a monocular SLAM algorithm 
(ORB-SLAM with modified output). An overview of both 
application scenarios can be seen in Fig. 3a.

Table 1  Comparison of related works

Work Gesture GDP Indoor Outdoor Werable Depth cam  Monocular 
cam

Short-scale Large-scale

[11] � – � – – � – � –

[20] � – � – – � – � –

[16] � – � – � – – � –

[21] � – � – – – � � –

[22] � – � – � – – � –

[23] – – – � � – � � �

[24] � – � � � – � � –

Present � � � � – – � – �
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Fig. 3  a Scenario Overview There are four essential elements: the user, the targets, camera, and processing unit. The user interacts with the camera 
in the form of pointing towards the desired target. The targets are types of visual content. For example, this includes a window that the processing 
unit has been trained to recognize using object detection algorithms. The processing unit is any computational system that processes the images 
from the camera and sends signals to the UAV. The Camera is the image feed in the moving UAV. b Pose Output Format: BODY-25. c Left-side: Points 
used from BODY-25 model. Right-side: Intuition on depth estimation of keypoints. When pointing backwards (transverse and sagittal planes), the 
size of the user’s arm on the Image Projection ( dc12 + dc23 + dc34 ) is deformed by perspective. In this scenario, dc12 + dc23 + dc34 is then smaller 
than 

(

df 12 ×
dc18
df 18

)

+

(

df 23 ×
dc18
df 18

)

+

(

df 34 ×
dc18
df 18

)

 , which is the expected size of the arm when the user is pointing sideways (arms on the frontal 

plane). Please refer to Eqs. 8, 9, 10. Using a right-angle triangle intuition (see the three grey right angle triangles in the image), we can estimate the 
depth change between Pz

1
 and Pz

2
 , Pz

3
 , Pz

4
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2D pointing gesture interface approach
This approach was first presented in [7], where object 
detection and pose estimation were combined to decide 
which object is selected by the user. For Pose Estimation, 
we used OpenPOSE [27]. This is a real-time multi-per-
son system that detects the human body, hand, face, and 
foot keypoints on single images. We used OpenPOSE’s 
BODY_25 (Fig.  3b) model for speed and accuracy. To 
detect objects, we used the YOLOV3-tiny [28], which 
provides sufficient speed and accuracy to be run on an 
integrated development kit in the future.

This approach starts by acquiring an RGB image from 
a UAV. Each monocular image has dimensions repre-
sented by a width w and height h . The BODY_25 model 
provides Pn points where n ∈ N , 0 ≤ n ≤ 24 . We only 
use eight points: P1 until P8 (Fig. 3c, left-side). Each point 
Pn ∈ R

w×h has 2D coordinates Px
n and Py

n , the pointing 
gesture is defined by the arm keypoints: P3,P4 and P6,P7 . 
Notice that P5 , P6 and P7 are analogous to P2 , P3 and P4 , 
respectively. Two points from the same arm are used to 
calculate a 2D line equation, which can take the form

for points P3,P4 . For each arm, a line segment is defined 
starting from an elbow point like P3 in the direction of a 
hand point like P4 up to the border of the image. The bor-
ders of the image can be defined as f (y) = w , f (y) = 0 , 
f (x) = h , f (x) = 0 , for every (x, y) ∈ R

w×h . The choice 
of which border to use is guided by the direction of the 
pointing gesture.

We use YOLO [28] to detect objects. It produces 
bounding boxes for the objects it was trained to rec-
ognize. The bounding boxes are simply two points 
Bn1 ∈ R

w×h and Bn2 ∈ R
w×h used to define a rectangle 

that contains the object on the image.
An object is selected if the line segment crosses the 

object’s bounding box. More details in [7]. In the case 
that the line segment crosses more than one bounding 
box, we chose the bounding box that has the center clos-
est to the line segment.

This system works in outdoor and indoor environ-
ments. If the user points in the general location of a tar-
get object (e.g., window), the system will select it, and 
there is no need to point directly towards the object. But 
there are shortcomings: a line crossing multiple win-
dows is ambiguous. If there are multiple windows around 
the correct one, it is not guaranteed that the pointing 
line will cross the correct one closest to the center (see 
Fig. 13a), and it is not guaranteed that the user will point 
to the center of the window. Therefore, the lack of depth 
information to make a more informed decision limits this 

(1)f (x) =
(P

y
3 − P

y
4)

(Px
3 − Px

4)
× (x − Px

3)+ P
y
3

system. In order to overcome that limitation, we propose 
the 3D pointing gesture interface approach.

3D pointing gesture interface approach
To estimate the correct pointing area, or target object 
(window), 3D information is required. We can cap-
ture the 3D information of a scene in the format of 
point clouds. Point clouds can be obtained from diverse 
sources, we chose a monocular simultaneous localiza-
tion and mapping (SLAM), named ORB-SLAM, that is 
relatively low cost and that produced a sparse point cloud 
with enough information for our purposes: obtaining the 
distances from drone to user and to target.

ORB-SLAM [29] is a feature-based monocular system 
that operates in real-time in indoor and outdoor environ-
ments. We were interested in the sparse point cloud it 
provides, and we modified its original code to output the 
point cloud of the feature points detected on the current 
image frame. By combining object detection and pose 
estimation algorithms, in our case YOLO and openPOSE, 
we can then estimate the depth of objects of interest on 
the current RGB image. This monocular SLAM provides 
an unscaled point cloud. To scale it, we perform a one-
time calibration step as explained below. We also provide 
a general model, using average user values, in case this 
calibration process is not feasible. With depth estimated, 
we can then calculate the pointing gesture direction up to 
a specific point in the monocular image. A flowchart of 
this approach is shown in Fig. 4.

This approach starts by acquiring an RGB image from a 
UAV. Each image frame has a width w and height h . The X 
axis represents the width, the Y axis the height, with ori-
gin on the upper left of the image. Using the sparse point 
cloud and calibration files we infer an estimation of the Z 
axis pointing towards the inside of the image.

Calibration
The 3 planes of body motion are the sagittal, frontal, 
and transverse. The calibration step requires the user to 
be standing with open arms at the side of the body. The 
arms should be in the user’s frontal plane. We placed the 
UAV at a fixed distance Df  of 3 m to the user, but other 
distances could also be used. We also took measure-
ments of the user’s height and torso size. A few frames 
were recorded in this condition. OpenPOSE’s BODY_25 
model (Fig. 3b) provides 25 keypoints Pn ∈ R

w×h where 
n ∈ N , 0 ≤ n ≤ 24 , for each image frame. Each point has 
2D coordinates Pnx and Pny.

The calibration step is the creation of a file to store 
the values of 8 of the user’s keypoints (in pixel values) at 
a fixed distance Df  to the UAV. And also store the real 
measurements of the user’s height and torso size (in met-
ric units). The calibration step takes about a minute and 
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Fig. 4  3D pointing gesture interface application flowchart. ORB-SLAM integrated with Object Detection and Pose Estimation towards pointing 
gesture interaction
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is a one-time step for each user. These 8 keypoints are 
points P1 , P2 , P3 , P4 , P5 , P6 , P7 and P8 in Fig. 3c.

Depth estimation using calibration
In the calibration step we store 8 keypoints from user at 
a fixed distance Df  from the camera (UAV). More specifi-
cally, calibration gives us the size of the user’s torso, in 
pixels, given by the euclidean distance between points P1 
and P8 (see Fig. 3c):

at a fixed distance Df  to the UAV. Therefore Df  will refer 
to the distance to the user in calibration time. In a real 
situation, the user moves away or towards the UAV, 
therefore the current distance Dc from the user to the 
UAV’s camera (UAV) changes. To estimate Dc we use the 
current distance dc18 between points P1 and P8 , and the 
inverse linear relationship between size and distance:

(2)
df 18(P1,P8) =

√

(

Px
1 − Px

8

)2
+ (P

y
1 − P

y
8)

2, at distance Df

(3)Dc =
Df × df 18

dc18

(4)
dc18(P1,P8) =

√

(

Px
1 − Px

8

)2
+ (P

y
1 − P

y
8)

2, at distance Dc

where dc18 is the current euclidean distance between 
points P1 and P8 (Fig. 3c), and df 18 is the fixed distance 
between points P1 and P8 (Fig. 3c). That is, df 18 is the dis-
tance between points P1 and P8 (Fig.  3c) at calibration 
time.

When the user moves, the 8 detected keypoints also 
change. We assume that the user is always standing, 
so all changes in the image size of the user’s torso ( dc ) 
will be affected by the change in the user distance to 
the UAV ( Dc ). As can be observed in Fig.  3c, the torso 
is represented by points P1 and P8 , the top of the torso 
to one of the shoulders are represented by points P1 and 
P2 , respectively. On that same side, the elbow is P3 , and 
finally the hand is P4.

When the user distance to the UAV increases, we 
observe that the original distance df 18 from P1 to P8 is 
decreased by Df

Dc
 , see Fig.  5 and the rearranged Eq.  3: 

dc18 = df 18 ×
Df

Dc
 . If the user has his or her arms in the 

frontal plane, the current distance from P1 to P2 (labeled 
dc12 ) is also decreased by Df

Dc
 . Using Eq. 3 Df

Dc
 can be rewrit-

ten as dc18
df 18

 . Therefore, the expected value for the current 
distance dc12 can be defined as:

(5)

dc12 =

(

df 12 ×
dc18

df 18

)

, when the user has his

or her arms at the frontal plane

Fig. 5  Relation between distance in the real world and size in the image When the user distance to the UAV increases, the original distance df 18 is 
decreased by Df

Dc
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Similarly for dc23 , dc34:

During the calibration, the user was standing with open 
arms at the side of the body. The arms were in the user’s 
frontal plane. When the user points towards an object 
behind his or her body, the size of the user’s arm on the 
image will be shorter than when the user was standing 
with open arms at the side of the body. This is the cue we 
use to determine the depth of each point on the arm.

For example, consider the distance from P3 to P4 , 
which corresponds to one of the forearms of the user. 
The distance from P3 to P4 at calibration time is df 34 , 
and the current distance is dc34 . When the user has 
open arms at the side of the body, the relationship 
between df 34 and dc34 is expressed by Eq.  7. However, 
when the user points backwards dc34 will be less than 
the expected value of df 34 × dc18

df 18
.

Therefore, by checking how the current distances (for 
example dc12 , dc23 , dc34 for one of the arms) behave, we 
can quantify the change in depth of each point in the 
user’s hands, elbows and shoulders. If the user’s arm stays 
in the frontal plane, the distances in between his arm’s 
keypoints decrease by dc18

df 18
 . However, when the user 

points to something behind himself or herself, moving 
the arm in the transverse and sagittal planes, the projec-
tion of the arm on the image plane will be smaller than 
expected (Fig. 3c).

To quantify the depth of each point, we assume that 
the depth Pz

1 will be the current distance Dc to the UAV. 
To express that depth Dc in pixel units, we use the pro-
portion from the torso pixel size in calibration time df 18 
and real size treal in metric units:

(6)

dc23 =

(

df 23 ×
dc18

df 18

)

, when the user has his or her

arms at the frontal plane

(7)

dc34 =

(

df 34 ×
dc18

df 18

)

, when the user has his or her

arms at the frontal plane

.

(8)

dc12 <

(

df 12 ×
dc18

df 18

)

, when the user is pointing backwards

(9)

dc23 <

(

df 23 ×
dc18

df 18

)

, when the user is pointing backwards

(10)

dc34 <

(

df 34 ×
dc18

df 18

)

, when the user is pointing backwards

Using a right-angle triangle we calculate the estimated 
depth for subsequent points P2 , P3 and P4 . So the esti-
mated depth Pz

2 of point P2 would be the depth from the 
previous joint point ( P1 in this case) plus the calculation 
of the right-angle triangle (Fig. 3c), as shown in Eq. 12.

The estimated depth Pz
2 for P2 uses the current distance 

dc12 from P1 to P2 , the saved distance df 12 from P1 to P2 at 
calibration time, the current distance dc18 from P1 to P8 , 
and the saved distance df 18 from P1 to P8 at calibration 
time:

Similarly for Pz
3 , it consider the the preceding points’ 

depths ( Pz
2):

The estimated depth Pz
4 for the hand considers the pre-

ceding points’ depths ( Pz
3):

Analogously, we obtain Pz
5 , P

z
6 and Pz

7 . We now have 
(x,  y,  z) coordinates, in pixels, for every point on the 
arms. At this point, we just need the depth of the build-
ing to finish the pointing line, from the user to the build-
ing direction.

3D target estimation
Knowing the estimated user distance in the current 
frame, we can estimate the distance to the building with 
ORB-SLAM. It is an ORB-feature based SLAM that pro-
vides a point cloud in the form of map points and its own 
definition of keyframes. Map points are the structure for 
the 3D reconstruction of the scene. Each map point cor-
responds to a textured planar patch in the world whose 
position has been triangulated from different views [30]. 
Points correspond to ORB features in the images, so map 
points are triangulation of FAST corners. The usual out-
put is the map points for the whole world. We modified 
the original code to also output all map points corre-
sponding to the ORB features in just the current image. 
OpenPOSE gives us the position of the user on the cur-
rent image, and YOLO, the windows. Because we can 
then get the map points associated with each one, it gives 

(11)Pz
1 =

Dc × df 18

treal

(12)Pz
2 = Pz

1 +

√

(

df 12 ×
dc18

df 18

)2

− (dc12)2

(13)Pz
3 = Pz

2 +

√

(

df 23 ×
dc18

df 18

)2

− (dc23)2

(14)Pz
4 = Pz

3 +

√

(

df 34 ×
dc18

df 18

)2

− (dc34)2
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us the unscaled relationship between the UAV distance to 
the user and the UAV distance to the building (windows).

Because ORB-SLAM provides unscaled point cloud 
we need to equate the previously known distance Dc 
(from user to UAV, in metric units) to ORB-SLAM’s user 
point cloud’s average distance. Dc will give a dimension 
scale to the values of the point cloud. After scaling the 
point cloud, we can isolate the building point cloud using 
YOLO’s recognition of the windows and estimate the 
building distance Bc in metric units.

With the building distance Bc known, the product 
bc =

Bc×df 18
treal

 will be the conversion from the distance Bc , 
in metric system units, to our system Z axis, in pixel 
units. Given two keypoints from the arm, we calculate 
the 3D line equation, and find (xc, yc) values given bc as a 
z value, so for the keypoints P3 and P4:

α is needed because the 3D line equation belongs in an 
orthogonal projection, and this system deals with per-
spective projection. This is a big challenge in a monoc-
ular-based long-scaled interaction scenario, where the 
distance between the user and target of interaction 
(building’s windows) exceeds 3 m. The calculation of 
α is part of the innovation presented in this work, as it 
was obtained after numerous tests in simulation. α was 
observed as:

In Eq. 16, a is the maximum width, in metric units, in the 
image’s field-of-view FOVx at distance Df  of the camera:

In Eq. 16, b is the change in the maximum width seen in 
the image at every change in the distance to the camera:

The field-of-view FOVx of the image is calculated with 
respect to the focal length Fx of the camera’s Intrinsic 
Matrix:

where w is the width of the image frame. Simplifying 
Eq. 16, α is a scaling factor associated with Bc as follows:

(15)α

(

bc − Pz
3

Pz
4 − Pz

3

)

=
xcxcxc − Px

3

Px
4 − Px

3

=
ycycyc − P

y
3

P
y
4 − P

y
3

(16)α =
a

(Bc − Dc)× b+ a

(17)a = 2× Dc × tan

(

FOVx

2

)

(18)b = 2× tan

(

FOVx

2

)

(19)FOVx = 2× arctan

(

w

2× Fx

)

So, α can be defined as the proportion between the dis-
tance to the camera ( Dc ) and the building distance ( Bc ), 
as demonstrated in Fig. 6. The result of Eq. 15 is then a 
target point TP ∈ R

w×h where

If TP , obtained by Eq.  15, is located inside a window’s 
bounding box, that window is selected. Each bounding 
box is defined by two points Bn1 ∈ R

w×h and Bn2 ∈ R
w×h , 

a rectangle that contains the object on the image.
In the following section, we describe the experiments 

performed with the proposed systems. We tested both 
systems in a simulation environment and real-world 
scenario.

Experiments and results
We ran experiments in a simulated and real-world envi-
ronment on both applications: 2D pointing gesture inter-
face and 3D pointing gesture interface. The results are 
reported in this section.

Simulation setup
We used Gazebo [31] 7.0 to create a simulated environ-
ment with a building model, a human model, and a UAV 
model. We modified all models from Gazebo’s originals 
(Fig.  7). To ensure a variability of positions, the experi-
ment had eight different positions for the human (Fig. 8). 
In some experiments, the human model executed three 
fixed pointing angles (Fig.  9), for each one of the eight 
positions. In this case we wanted to have a test scenario 
with various “true negative” in the ground truth. In other 
experiments, the human model would point to four win-
dows for each position. In this other case, the objective 
was to obtain a ground truth with various “true posi-
tives”. The UAV stood at a distance of 10 or 20 m from the 
building, depending on the experiment. We used those 
two specific distances because they were considered a 
medium distance from the building, and a long distance 
from the building (larger-scale interaction scenario). The 
UAV stood at a fixed height of 2.5 m from the ground.

For each pointing gesture in the Experiments, 
there is a ground truth associated. This ground truth 
is either a specific window or that no windows were 
selected in that case (e.g., pointing to the wall). We 
considered a true positive when the system correctly 
identifies the specific window, true negative means 
that the system correctly identifies when the point-
ing gesture is aimed at a not-window object or some-
thing outside the UAV’s view. False positive happens 

(20)α =
Dc

Bc

(21)TP = (xc, yc, bc)
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when the wrong window is identified, false negative 
means that there is a window being pointed at but the 
system wrongly concluded that the user is not point-
ing to any windows. The results from the technologies 
used here (OpenPOSE, YOLO, ORB-SLAM) are non-
deterministic, so when deciding the outcome of the 

pointing gesture, we consider a 4 s-window to identify 
the Mode and make a decision.

2D pointing gesture interface approach result
We tested the 2D approach using the eight positions 
shown in Fig. 8, the building stood at 10 m from the UAV. 
This Experiment is labeled “Exp0”. For each position, the 
human model tested all three fixed angles, as shown in 

Fig. 6  Slice of perspective projection at current user distance Dc and current building distance Bc . The 3D pointing gesture system outputs a target 
point TP that, if inside a detected window area, selects that window

Fig. 7  Simulation environment We used Gazebo 7.0, all models used 
were modified from Gazebo’s originals

Fig. 8  User’s positioning on the experiments. We tested the human 
model on eight different positions, for each Experiment
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Fig. 9. This approach could not identify when the human 
model pointed to not-windows objects; it always tries to 
select a window. If at least one window bounding box 
crosses the pointing line, this approach will select it even 
if the user is pointing at the wall. Results showed 79% of 
false positives and 21% of true positives. The 2D approach 
did not produce any false negatives or true negatives. The 
resulting accuracy was 20%, precision 20%, recall 100%, 
and F1 Score of 0.34. The Matthew correlation coefficient 
could not be calculated due to zeroed false negatives and 
true negatives. The results are summarised on Table 2.

3D pointing gesture interface approach result
We tested the 3D pointing gesture interface approach 
in three experiments. The first experiment was labeled 
“Exp1”. Exp1 used the eight user positioning shown in 
Fig.  8, with fixed pointing angles (Fig.  9). The building 
stood at 10 m of distance from the UAV. Results showed 
approximately 25% of true positives, 58% of true nega-
tives, 12% of false positives, and 4% of false negatives. 
The resulting accuracy was 83%, precision was 66%, recall 
was 85%, F1 Score was 0.75, and Matthew correlation 

coefficient was 0.63. This result is comparably better than 
the previous one, so we decided to perform other experi-
ments with the 3D pointing gesture interface approach.

The second experiment was labeled “Exp2”. In Exp2, we 
used eight positions with fixed angles, but the building 
stood 20 m away from the UAV. We wanted to see how 
it behaved with targets (windows) further away. Results 
showed approximately 25% true positives, 58% true nega-
tives, 0% false positives, and 16% of false negatives. The 
resulting accuracy was 83%, precision was 100%, recall 
was 66%, F1 Score was 0.75, and the Matthew correlation 
coefficient was 0.68. The results were slightly better, given 
the increased distance to the building, but still similar. 
We decided to perform another experiment to test point-
ing at the windows with varied angles instead of using 
fixed angles.

The third experiment was labeled “Exp3”. For each one 
of the eight positions in Fig. 8, the human model would 
point to all four bottom windows of the building, using 
angles that best suited each window. Results showed 
approximately 87% true positives, 0% true negatives, 0% 
false positives, and 12% false negatives. The resulting 
accuracy was 87%, precision was 100%, recall was 87%, 
and F1 score was 0.93. The Matthew correlation coeffi-
cient was not applicable due to the lack of negatives in 
the ground truth. The results were slightly better than the 
previous experiments. We noticed that when the human 
model stood at Row 3 (Fig. 8), OpenPOSE would output 
less than reliable poses. We decided to analyze the data 
from the previous three Experiments by Row. The results 
(Table 2) show that indeed the first row had better results 
than row 2, which had better results than row 3.

When considering all three experiments, results 
showed approximately 45% of true positives, 38% of 
true negatives, 4% of false positives, and 11% of false 

Fig. 9  Fixed angles used. We experimented with fixed angles, that 
meant that in some positions the human model would be pointing 
to the wall, or to outside the UAV’s view

Table 2  Summary of experiments on simulation environment

2D 3D 3D 3D 3D 3D 3D 3D

Exp0 Exp1 Exp2 Exp3 Row1 Row2 Row3 Exp123

UAV-building distance 10 m 10 m 20 m 10 m N/A N/A N/A N/A

UAV-user distance N/A N/A N/A N/A 3 m 5 m 7 m N/A

MCC N/A 0.639 0.683 N/A 0.891 0.631 0.500 0.701

F1 score 0.344 0.75 0.75 0.933 0.952 0.814 0.740 0.857

Accuracy 0.20 0.83 0.83 0.875 0.94 0.81 0.74 0.84

Precision 0.20 0.66 1 1 1 0.84 0.83 0.91

Recall 1 0.85 0.66 0.87 0.90 0.78 0.66 0.80

True positives 20.8% 25% 25% 87.5% 55.5% 40.7% 37% 45.8%

True negatives 0% 58.3% 58% 0% 38.8% 40.7% 37% 38.8%

False positives 79.1% 12.5% 0% 0% 0% 7% 7% 4.1%

False negatives 0% 4% 16.6% 12.5% 5% 11.1% 18.5% 11.1%
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negatives. The resulting accuracy was 84%, precision 
91%, recall 80%, F1 Score of 0.85, and Matthew correla-
tion coefficient of 0.70. A sample of successful and failed 
cases can be seen in Fig. 10.

Real‑world experiment
An experiment was conducted at the Kobe Fire Academy, 
Japan. The experiment’s purpose was the identification of 
the user’s pointed window by the UAV. We used the Par-
rot Bebop 2 [32] for the experiments; This is a quadcopter 
that weighs around 500 g, offers 25 min of autonomous 
flight time, and can film in 1080p full HD with its wide-
angle 14-megapixel lens. For the sake of performance, the 
image size was limited to 856 x 480 pixels. We used an 
available SDK called bebop_autonomy for the ROS-sup-
ported system.

The Bebop 2 interfaced via wifi with a laptop. We used 
an Alienware 13 R3, with an NVIDIA GTX 1060 graph-
ics card, 16 GB RAM, and an i7-7700hq processing unit. 
Other than the Bebop 2 and Laptop, no other electronic 
devices were used. They interfaced using the Robot 
Operating System (ROS) [33].

We asked permission from firefighters and received 
permission from the Kobe Fire Academy to perform the 
experiment. Regarding the use of the aerial robot, there 
are legal restrictions. This research has got permission 
from the Ministry of Land, Infrastructure, Transport 
and Tourism, and Osaka Aviation Bureau under license 
number: P180900923 for performing drone experi-
ments. In subject experiments, the ethics committee 
for safety subjects it to an ethical review established by 
Cyber Media Center at Osaka University. From the Eth-
ics Committee, we obtained approval for data use in 
this subject. Appropriate care was taken to avoid any 

psychological or physiological distress on the subject dur-
ing the experiment.

It is challenging to get the exact result of an experiment 
conducted outdoors as we can not have ground truth 
like we have with experiments that use motion capture 
indoors. Therefore, we focus on a classification problem 
in the present work where the correct pointed window, 
among an array of windows of a building, should be iden-
tified by the proposed 3D interface approach.

During the experiment, a user pointed to multiple win-
dows on a building, and the UAV camera’s image was 
recorded. A total of 6 individuals were able to participate 
in this setting. Participant age ranged from 23 to 31 years 
(M = 28.66, SD = 2.94), 1 participant was female, 50% of 
the participants had previous experience with manually 
flying a UAV, and 50% had previously used some form of 
gesture interface.

Each participant was positioned in 6 different spots 
from 12 possible spots (see Fig.  11). The 12 spots were 
chosen to have enough variability of human positions in 
relation to the building. These 12 spots were distributed 
in 3 columns and 4 rows in front of the building. The col-
umns were aligned with the left, center, and right sides 
of the building. Starting from a medium distance, the 
closest row was 10 m from the building, increasing a dis-
tance of 5 m for every other row until the last row. The 
last row stood at 25 m from the building, providing test 
cases at a large-scale scenario. For each spot, the user 
first opened both arms and pointed sideways, at no win-
dow, ensuring “true negative” test cases where the user 
wasn’t pointing at anything. Then the user pointed at ten 
windows, sequentially, 5 s for each window. A total of 
432 combinations of windows, users and positions were 
tested.

Fig. 10  Sample of simulation experiments’ results
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To ensure the correct aim, we attached a laser pointer 
(Fig.  12) to the user’s right arm. The laser (3000  mW 
with a wavelength of 532 nm) allowed the user to point 
at long-range objects outdoors with precision. In pre-
liminary experiments, we found substantial human error 

when trying to point without any visual feedback. So we 
wanted to investigate integrating visual feedback from 
the UAV’s point of view (POV) so that the user can point 
more precisely and understand the output of the UAV’s 
used system.

The UAV faced the building, with the user inside its 
view. Sometimes not all windows were present inside the 
UAV’s image view. The UAV stood from 2 to 5 m behind 
the user and 1.7 m to 3 m high. We used this short dis-
tance because at longer distances, the 856 × 480 pixel 
image would lose details and cause OpenPOSE to output 
unsatisfactory results. By using a higher image resolu-
tion, this distance can be increased accordingly.

We classified each pointed window as true positive if it 
was the correct window, as false positive if it wasn’t the 
correct window, and as false negative if no window was 
selected. We used true negative in two cases; the pointed 
window was outside the image, and the used approach 
determined that no window was selected. The second 
case of true negative was when the user was not pointing 
to any window.

A total of 432 combinations of windows, users, and 
positions were recorded and later processed using the 
two proposed approaches.

2D pointing gesture interface approach result
This approach chooses the window with the center clos-
est to the pointing line when crossing more than one 
window.

The results (Table 3) of the 432 combinations using the 
2D approach showed an F1-Score of 0.45 and a Matthews 
Correlation Coefficient (MCC) of 0.1, which shows that 
this approach was only slightly better than the neutral 
points of both metrics. The experiment used an array of 
windows on the same plane, and this approach worked 
better when the targets were in different planes, due to 
the limitation of using only 2D data.

Analyzing the results by row: The first row shows an 
F1-Score of 0.65 and an MCC of 0.39, the second row an 
F1-Score of 0.48 and an MCC of 0.23, the third row an 
F1-Score of 0.39 and an MCC of 0.09, and the fourth row 
an F1-Score of 0.28 and an MCC of -0.26. So the results 
worsen the more distant the row from the building, 

Fig. 11  Top view of real-world experiment

Fig. 12  A Laser pointer was used in the experiments. As 
ground-truth, each user used a laser pointer to ensure they were 
pointing to the intended window

Table 3  Summary of experiments on real-world environment

2D 2D 2D 2D 2D 3D 3D 3D 3D 3D

R1 R2 R3 R4 AllRows R1 R2 R3 R4 AllRows

Rows-build. dist. 10 m 15 m 20 m 25 m 10–25 m 10 m 15 m 20 m 25 m 10–25 m

MCC 0.39 0.23 0.09 − 0.26 0.1 0.53 0.19 0.1 − 0.003 0.26

F1 score 0.65 0.48 0.39 0.28 0.45 0.81 0.78 0.70 0.58 0.73

Accuracy 0.49 0.33 0.25 0.16 0.3 0.73 0.65 0.55 0.41 0.59
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which is expected since the target area decreases with 
distance.

A sample result of this approach is in Fig.  13a, we 
can see the outputs from OpenPOSE and YOLO. The 
result shown in the picture is a false positive. The user 
was pointing to the window above the selected one at 
that moment. This ambiguity caused by the lack of tree 
dimensional information in the decision process is the 
most significant cause of errors in the 2D approach.

3D pointing gesture interface approach result
This approach uses ORB-SLAM to infer the real-worlds 
thirds dimension, from monocular images, to predict the 
pointed window better. The calibrated file used for each 
participant was previously recorded.

The results (Table  3) of the 432 combinations using 
the 3D pointing gesture interface approach showed an 
F1-Score of 0.73 and a Matthews Correlation Coefficient 
(MCC) of 0.26, which offers a significant improvement 
from the previous result of the 2D Approach.

Analyzing the results by row: The first row shows an 
F1-Score of 0.81 and an MCC of 0.53, the second row 
an F1-Score of 0.78 and an MCC of 0.19, the third row 
an F1-Score of 0.70 and an MCC of 0.1, and the fourth 
row an F1-Score of 0.58 and an MCC of − 0.003. So the 
results worsen the more distant the row from the build-
ing, which is expected since the target area decreases 
with distance.

A sample result of this approach is in Fig.  13b, we 
can see the outputs from ORB-SLAM, OpenPOSE and 
YOLO. The result shown in the picture is a true positive.

We classified each detected window as true positive if 
it was the correct window target (Fig. 14a–c). We classi-
fied each detected window as false positive if it wasn’t the 

correct target window (Fig. 14d–f). We classified these as 
false negatives if no window was selected when the user 
was pointing to a window in the scene (Fig.  14g–i). We 
classified these as true negatives when either the correct 
window target was outside the image or the user was not 
pointing to a window (Fig. 14j–l).

Discussion
Regarding the effectiveness of this method for firefighter 
applications, there are a number of factors that should be 
considered. First, the types of building structures natu-
ral to the region of application. The standardization of 
building structures in Japan facilitates the use of visual 
solutions like our proposed 3D interface. Second is the 
angular resolution necessary to visualize the scene. For 
example, in case of buildings with more than four stories, 
the distance between user and target window can extrap-
olate the technical limits of low-cost UAV-mounted cam-
eras. In that case it would be necessary a device with 
increased angular resolution, which in turn would enable 
greater image resolution, implicating a higher computa-
tional cost.

In the current state of the proposed 3D pointing ges-
ture interface approach, the effective range for practi-
cal use regarding the number of floors of a building 
would be up to the 3rd floors of buildings. The effec-
tive range regarding the distance user-building would 
be 20 m. The third row of the real-world experiment 
stood at a 20 m distance from the building and pro-
vided a F1-score of 0.7 ( Table  3). The fourth row 
showed a decay in the F1-score of 0.12 points, scoring 
0.58. The results of the fourth row, although promis-
ing, felt cumbersome. Regarding accuracy, the 3D 
interface presented overall had a total of 59% accurate 

Fig. 13  a This figure shows the outputs of OpenPOSE, YOLO, and the 2D pointing gesture interface approach. This sample is a false positive; 
the correct window is above the selected one. This error is due to a line crossing multiple windows is ambiguous. This example is the most 
significant cause of error given the lack of 3D information to make a more informed decision in this approach. b This figure shows the outputs of 
OpenPOSE, YOLO, ORB-SLAM, and the 3D pointing gesture interface approach. Here, the calculation considers the estimated depth from projective 
transformations and monocular SLAM’s point cloud, resulting in selecting the correct window. This sample is a true positive
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guesses, which is a significant improvement from the 
30% accurate guesses from the previous 2D proposed 
solution (Table 3). The first row, 10 m from the build-
ing, was the most accurate, presenting 73% accurate 
guesses on the 3D gesture interface approach. The 
expected accuracy for flawless use in a real emergency 
situation is higher, but when we increase the image 
size we add computational cost that could hinder the 
use of low-cost equipment. So the 3D gesture inter-
face approach could benefit from accuracy improve-
ment that doesn’t impact the current computational 
cost.

Other factors like weather conditions and the presence 
of smoke coming out the windows could also hinder the 
application of the proposed visual-based 3D interface 
solution.

Overall, the results from the 3D pointing gesture inter-
face approach showed significant improvement in the 
limited setting in which it operated. Figure 15 shows the 
most significant improvement from the 2D approach to 
the 3D pointing gesture interface approach. With the 3D 
pointing gesture interface approach it is possible to dis-
tinguish between elements aligned on the same plane, 
or when there aren’t any object being pointed inside the 
scene.

In the real-world experiment, the UAV was facing the 
building as statically as possible, although a considerable 
amount of drift was present due to wind conditions at the 
time. The calibration file for each person was previously 
recorded in another environment to simulate the real-
world setting where one calibration file was used multiple 
times for the same person.

The UAV distance to the user was primarily determined 
by acceptable output from openPOSE given the resolu-
tion. We understand that by increasing the resolution of 
the UAV image, it is possible also to increase the distance 
between the UAV and user, but this will also increase 
the computational cost of the system. When running the 
experiment, the simultaneous localization and mapping 
(SLAM) based system ran at 16  fps on average, and the 
2D based system ran at 29 fps.

The use of ORB-SLAM required at least a small amount 
of translational movement to keep updating the generat-
ing point cloud. To obtain an initial point cloud, the UAV 
can be pre-programmed to translate along the horizontal 
direction at a certain height and distance which can cover 
the whole surface of the building. In our experiment, the 
height is 3.5 m from the ground and the translate dis-
tance is around 1 m which can cover a building of around 
3 stories, standing at 30 m distance from the UAV.

Fig. 14  Samples from the 3D pointing gesture interface approach. a–c True positive samples. d–f False positive samples. g–i False negative 
samples. j–l True negative samples
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We also showed that the sparse point cloud from ORB-
SLAM could detect the user position, and the transla-
tional movements ensured that the point cloud updated 
that position after a few moments.

The output of ORB-SLAM was also incremented to 
provide the point cloud associated with the current 
image frame, and that is a modification to the original 
ORB-SLAM code, which we will make available for fur-
ther research.

Occlusion occurred when the user’s arm was not vis-
ible because other parts of the user body overlaid the 
pointing arm (Fig. 16). Often this body part was the head. 
Occlusion occurred in less than 4% of the 432 combina-
tions tested. It happened mostly in the middle column, 
that is, positions 2, 5, 8, and 11 of the experiment set-
ting (Fig. 11). This result suggests that pointing from the 
side columns resulted in better detection from the UAV’s 
point of view (POV).

We filtered the OpenPOSE output so that it would 
use the skeleton of only the user, even if other persons 
appeared in the background of the image. We did that by 
filtering the biggest OpenPOSE skeleton fist, then track-
ing that skeleton using pixel distance from the previous 
frame. The result was that after the initial movement, it 
could keep track of the correct skeleton regardless of its 
size. For smoothness, we used the averaged value of the 
last ten keypoints, for each OpenPOSE keypoint on the 
user’s skeleton.

The current 3D pointing gesture interface approach 
could be used for other scenarios besides firefighting, it 

has a variety of applications because it’s based only on 
a monocular camera, so the only constraint is the need 
for a monocular camera, a computational unit and a 

Fig. 15  Samples of the 3D pointing gesture interface approach outperforming the 2D pointing gesture interface approach, given the same scene

Fig. 16  Sample of OpenPOSE’s output where occlusion occurred. On 
both images, the head overlaid the pointing arm. On the top image, 
the hand’s keypoint could not be “guessed.” On the bottom image, 
even with occlusion, the hand keypoint was “guessed” close to the 
correct position
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wireless signal. The “select” gesture is very general, it’s for 
example a good cue for intent, and there are many lines 
of researches that try to understand human intent [34–
36]. For example, this can be used to understand human 
intent though camera security on airports, where seeing 
where people are pointing helps raise security concerns, 
depending on other factors. Another application example 
could be a companion UAV that can interact with ordi-
nary objects selected by the user. It could also be used 
in an educational environment, in outdoor classes when 
the professor points towards the surroundings, the class 
camera can identify the target and show a specific con-
tent for the class.

One limitation of the system presented here is that 
in the real-world experiment, the UAV was facing the 
building as statically as possible, although a considerable 
amount of drift was present due to wind conditions at 
the time. Another limitation is that the user must always 
be inside the field of view of the UAV, to give commands 
to the UAV. So there must be a confirmation before the 
drone moves to the desired target, possibly losing sight 
of the user.

Conclusion
Given the wide variety of applications and multiple 
degrees of freedom, it is challenging to design a natu-
ral interaction, namely, Human–Drone interaction, to 
control UAVs effectively. In past work, we analyzed 
which gesture fits best for a particular scenario, used 
our Gesture Development Process [5], validated it in 
general tasks and with a diverse group of users [6], 
and conducted an elicitation study with the targeted 
users [7].

Here we presented a system that enables UAVs 
equipped with a monocular camera to determine which 
window of a building was selected by a human user, on 
a large-scale, indoors or outdoors. We developed two 
applications: one with monocular SLAM and another 
without SLAM (no depth information). Experimental 
evaluation showed that the 3D pointing gesture interface 
obtained, on average, a 0.85 F1-Score in simulation and 
a 0.73 F1-Score in a real-world setting. The 3D pointing 
gesture interface obtained a 0.58 F1-Score when consid-
ering only the results obtained at the maximum distance 
of 25 m between drone and building.

Our contributions include a Human–Drone interaction 
investigation on firefighting’s first response needs, and the 
large-scale monocular-based 3D pointing gesture interface 
approach. We also contributed to the modification of ORB-
SLAM’s output to include the current frame’s respective 
point cloud, made available for further research. Finally, the 

verification and validation of both approaches on the simu-
lated environment and real-world scenario contributed by 
producing artifacts such as a dataset of humans pointing to 
windows outdoor.

Future work
We see various ways to improve the current 3D pointing 
gesture interface system. By moving the UAV to get a bet-
ter point of view (POV) on the pointing gesture, we could 
avoid occlusion and increase accuracy. This POV would be 
based on the results presented here.

The visual feedback makes a difference in the accuracy of 
the user’s pointing task and UAV’s correct results. There-
fore, we could improve the User Experience and statisti-
cal results by integrating visual feedback to the current 3D 
pointing gesture interface system, possibly abdicating laser 
pointer use.

Finally, the deployment of the 3D pointing gesture inter-
face proposed approach on an embedded system should 
also be considered.
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