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Abstract 

Probabilistic localization based on Bayesian theory has been researched as a sensor fusion method to improve the 
robustness of localization. Pieces of position information, generated by sensors’ observation models with considera‑
tion for noises, are fused according to Bayesian theory. However, having large noises not considered in their observa‑
tion models, the sensors output erroneous position information; thus, the fusion result has a significant error, even 
when the other sensors output correct ones. In this research, we have proposed a sensor fusion system with a relative 
correlation checking test to realize robust localization. Pieces of erroneous position information, biased against others 
and having a negative correlation with others, are detected and excluded in our proposed system by checking their 
correlation between all of them. The purpose of this paper is to evaluate the robustness of our fusion system by con‑
ducting recursive localization experiments in various environments.
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Localization, estimating a device position based on 
onboard sensor data, has been researched for vehicles, 
smartphones, autonomous mobile robots, etc. [1–20]. 
For example, as for autonomous mobile robots, position 
information is used for map construction, path planning, 
and object avoidance [21–29]. Although various locali-
zation methods using Global Positioning System (GPS), 
camera, Light Detection And Ranging (LiDAR), etc. , 
have been proposed, it has been a critical issue that the 
localization accuracy depends on the environment. For 
example, the localization methods using GPS frequently 
fail in downtown districts because of reflected signals on 
buildings. The ones of the camera and LiDAR also fail in 
environments where many similar features exist. These 
uncertainties of sensor observations can make a fatal 
influence on the robustness of localization.

In order to improve robustness of localization, proba-
bilistic localization based on Bayesian theory, such as 
Kalman Filter, Particle Filter, etc., have been used as a 

sensor fusion method [5–17]. It can fuse pieces of posi-
tion information from every sensor according to the 
uncertainty of each sensor’s observation. However, prob-
abilistic localization is likely to fail when just an uncer-
tainty of a sensor observation is not correctly evaluated. 
For example, an uncertainty of GPS observation is gener-
ally computed according to the value which reflects the 
number of observable satellites and the arrangement of 
them, known as Dilution Of Precision (DOP). Although 
DOP is also used for smartphone position accuracy cir-
cle, it cannot reflect the multi-pass error influence, and 
the GPS position information often contains significantly 
high error, even when its DOP is low. Many researchers 
have proposed observation models to evaluate the uncer-
tainty of the observation for each sensor; nevertheless, a 
general model has not been established due to its high 
dependency on sensors and environments.

As a different viewpoint from the evaluation of the 
localization performance using uncertainty, we proposed 
a sensor fusion system evaluating the localization per-
formance using correlation. Evaluating the correlation 
of position information with each other, the system aims 
to detect and exclude erroneous position information 
biased against others. Our fusion process is as follows; 1. 
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expressing a piece of position information for each sen-
sor as a discrete probability distribution according to 
Particle Filter theory, 2. detecting and eliminating prob-
ability distributions biased against others by relative cor-
relation checking test, 3. computing a fused distribution 
by multiplying probability distributions passing the test.

In order to realize robust localization in various envi-
ronments, we proposed a sensor fusion system with a 
relative correlation checking test in [12]. Meanwhile, in 
[13], we combined our proposed system with a Particle 
Filter for improving robustness our system to a recursive 
localization method and confirmed the effectiveness in 
a limited environment. To demonstrate the robustness 
of our system in various environments, this paper men-
tions some results of recursive localization experiments 
in three environments: the road between buildings, park-
ing spaces, square. We show the robustness of localiza-
tion improves on various kinds of environments.

Related work
Before mentioning our proposed sensor fusion system, 
we introduce some existing researches classified into 
three approaches.

The first fusion approach is that a user assigns locali-
zation sensors to the environments where a robot moves 
in, according to their experiences and knowledge [18]. 
While this approach is done easily if the robot moves a 
limited area, the workload becomes harder as the area 
becomes larger. Moreover, there is no guarantee that the 
assignment will works the best forever because the envi-
ronment changes as time passes so that this is not suit-
able from the viewpoint of usability.

The second fusion approach is to compute a piece 
of position information from all sensors [1, 20, 21]. 
For example, in [21], Graeter et  al. designed a localiza-
tion system combining the advantages of a camera and 
LiDAR: a strong point feature matching of a camera such 
as Scale-Invariant Feature Transform (SIFT) and VISO, 
and an accurate depth measurement based on Time of 
Flight. Their system computes the depth of detected 
features in images using LiDAR points projected into 
images. However, in order to achieve the above calcula-
tion accurately, it requires strict sensor calibration in the 
order of millimeter to project LiDAR points into images 
correctly; moreover, it has to compute the depth of fea-
ture points in images by using sparsely projected LiDAR 
points near them. Even when sensor observations don’t 
contain large noises, this approach sometimes outputs 
erroneous position information.

The third fusion approach is to compute a piece of 
position information for each sensor, then fuse all of 
them. One of the most famous methods of this approach 
is probabilistic localization according to Bayesian theory. 

It expresses pieces of position information as probability 
distributions, which includes information about posi-
tion and uncertainty of observation. In this approach, 
it is a crucial problem how to evaluate an uncertainties 
in sensors’ observation models. As mentioned in intro-
duction, Maier et al. design the GPS observation model 
which computes its uncertainty based on DOP in [5]; 
however, it doesn’t reflect the multi-pass error influence. 
Therefore, in [17], Yamazaki et al. proposed an observa-
tion model: judging whether a satellite signal is sent by 
visible satellites or not using satellite arrangement and 
3-dimensional map, then removing signals from invisible 
satellites as reflected one. However, it couldn’t consider 
other causes of GPS localization error: diffraction sig-
nals caused in the ionosphere and convection. Because 
these error sources change unpredictably depending on 
places and time, the observation model with considera-
tion for all error sources has not been realized yet. On 
the other hand, as for LiDAR’s observation models, Hos-
sein et al. [26] proposed an observation model computing 
the uncertainty by matching the feature shapes in clus-
tered LiDAR points to landmarks in a three-dimensional 
map. Akai et al. [10] also proposed an observation model 
computing the uncertainties by matching LiDAR points 
to environmental map constructed by Normal Distribu-
tion Transition (NDT). However, it would fail evaluation 
of uncertainty in the case that there are some similar 
objects in the environment; the uncertainty would be low 
where a robot is on wrong but similar place to the true 
position place. There is no standard observation model 
whatever sensors you use. Erroneous probability distri-
butions fatally affect the fusion result based on the Bayes-
ian theory.

A similar approach to our system was proposed by Wei 
et al. in [8]. They added a relative sensor evaluation system 
to Bayesian theory fusion approach. In detail, the similar-
ity between every sensor’s position information, expressed 
as Information Filter, are checked one by one by the nor-
malized innovation squared checking test, then the posi-
tion information having low similarities with others are 
removed before the fusion step. All kinds of sensors don’t 
seem to have the same observation noises at the same time 
and place because their observation characteristics are dif-
ferent from each other so that relative sensor evaluation 
could detect just erroneous position information from 
noisy sensors. Information Filter is a Bayesian Filter that 
assumes the noises in the system follow Gaussian distribu-
tion. However, in the real world localization, some noises 
do not follow Gaussian noises. On the other hand, Parti-
cle Filter does not assume the Gaussian distribution. Par-
ticle Filter has more flexibility than the information filter 
because it is not under the assumption of Gaussian noises. 
Moreover, the experiment in Wei’s paper was conducted 
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only in one environment, so it couldn’t demonstrate the 
robustness of localization because the localization accu-
racy changes depending on the environment. In our works, 
we proposed a fusion system using Particle Filter and con-
ducted some experiments in various environments to dem-
onstrate our system’s robustness of localization in various 
environment.

Generic probabilistic localization
In this section, we first mention the theoretical basis of 
the Bayesian state estimation representation. The for-
mulation and mechanisms of the Particle Filter are then 
explained. At last, the sensor data fusion with multisen-
sor observation is demonstrated.

Theoretical basis of Bayesian theory
The basic theory of the proposed framework is recursive 
state estimation with sequential observations. The Bayes-
ian state estimation in this work is composed following 
two steps:

Prior update

Measurement update

where xt , z1:t , p(·) are the state of the robot at time step 
t, the observations up to t, the probability density func-
tion, respectively. p(zt |xt) is calculated using sensor data 
through an observation model. This recursion is initial-
ized with a known probability distribution p(x0|z0) based 
on an initial observation.

Particle filter
Particle filter, which simulates a probability distribu-
tion by a set of discrete points (particles), have been 
used due to its non-parametric features. It approximates 
p(xt |z1:t−1) in Equation (1) by crude density of a set of 
particles s[n]t  . We denote N is the size of the particles and 
δ(·) is a Dirac delta function. Equation (1) is approxi-
mated by the following function;

Then, p(zt |xt) in Eq. (2) is approximated by an Eq. (4);

(1)p(xt |z1:t−1) =

∫

p(xt |xt−1)p(xt−1|z1:t−1)dxt−1,

(2)p(xt |z1:t) =
p(zt |xt)p(xt |z1:t−1)
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where π(·) is an observation model of the sensor. 
p(xt |z1:t) is obtained by substituting Eq. (3) and (4) into 
Eq. (2) as follows;

where, α is a normalizing constant. The Minimum Mean 
Squared Error (MMSE) or Maximum A Posteriori Prob-
ability (MAP) of p(xt |z1:t) are commonly utilized to com-
pute an estimated robot position. After all, a new set of 
particles s[n]t+1 is generated according to p(xt |z1:t).

With multi‑sensor observation
In probabilistic localization, multiplication of probability 
distributions is used to fuse sensor estimation. We denote 
M, pm(·), pf (·) are the number of sensors, a probability 
distribution from m-th sensor, and a fused distribution; 
pf (·) is computed according to the following equation.

where α is a normalization factor. The multiplication of a 
probability is defined as a joint probability.

Note that, p(s[n]t |z1:t) is represented as p(s[n]) in the 
remainder of this paper for simplicity.

Sensor fusion system with relative correlation 
checking test
During the localization process, the measurements might 
be contaminated by large disturbances. As mentioned 
in section I, erroneous probability distribution, biased 
against others, makes serious influence on a fusion result 
even though the probabilistic theory is used. In our pro-
posed sensor fusion system shown in Fig.  1, the prob-
ability distributions, whose correlations with others are 
low, are validated as biased in the relative evaluator; then 
the biased probability distributions are removed in the 
selector. This section mentions the correlation checking 
test and a selection process based on relatively checking 
results. Note that this system can work when there are 
three or more sensors.

Correlation checking test
The correlations between probability distributions are 
validated by Pearson correlation [30]. As we denote the 
covariance between pm(·), pl(·) is Cov[pm(·), pl(·)] , and 
the standard deviations of pm(·), pl(·) are σm, σl respec-
tively, the Pearson correlation efficient ρm,l is calculated 
by the following equation;

(5)
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where µl ,µm are the mean of the pl
(

s[n]
)

, pm
(

s[n]
)

.
We utilize ρm,l as a value representing the coincidence 

of high probability particles between pm(·) and pl(·).
For example, we consider the probability distributions 

whose high probability particles are similar as shown in 
Fig. 2a. The vertical, horizontal axes and blue circles show 
x , p(·) , s[n] respectively. Both pm(s[i]), pl(s[i]) are high 
at s[i] , and both pm(s[j]), pl(s[j]) are low at s[j] . A scatter 

(7)
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plot whose vertical axis is pm(s[n]) and horizontal axis is 
pm(s

[n]) is shown in Fig. 2b. In Fig. 2b, pl(s[n]) gradually 
increase along with pm(s[n]) increasing. In other words, 
pm(s

[n]) and pl(s[n]) have positive correlation, and ρm,l is 
nearly 1. On the other hand, as shown in Fig.  3a, when 
high probability particles between pm(s[n]) and pl(s[n]) 
are not similar, pm(s[i]) is high and pl(s[i]) is low at s[i] , 
and pm(s[j]) is low and pl(s[j]) is high at s[j] . Figure  3b 
shows a scatter plot in the case of Fig.  3a. In Fig.  3b, 
pl(s

[n]) gradually decrease along with pm(s[n]) increasing. 
In other words, pm(s[n]) and pl(s[n]) have negative corre-
lation, and ρm,l is nearly −1 . Therefore, ρm,l represents the 
coincidence of high probability particles between pm(s[i]) 
and pm(s[j]) . We can evaluate the correlation by setting 
the threshold value ρth to ρm,l.

Fig. 1  Proposed sensor fusion framework

a

b
Fig. 2  Positively correlated probability distributions

a

b
Fig. 3  Negatively correlated probability distributions

Fig. 4  Relative checking framework



Page 5 of 11Ohashi et al. Robomech J             (2021) 8:3 	

Relative evaluation of different sensor observations
At the selection step shown in Fig.  4, the correlation 
between all probability distributions are evaluated, and 
the number of ρm,l > ρth for each pm(s[n]) is counted, 
which is Lm . Then, pm(s[n]) whose Lm is lower than M/2 
are removed, and other passing probability distribution 
are fused by Eq. (6).

This selective sensor fusion system is on the basis of the 
following assumption; it seldom happens that different 
kinds of sensors are affected by the same fatal environ-
mental noises at the same time and place. If the number 
of erroneous probability distributions is less than half of 
all, the proposed system can correctly detect and exclude 
the erroneous probability distributions. On the other 
hand, if over half of the sensors are affected by environ-
mental noises at the same time, there is the possibility 
that the proposed system cannot detect only erroneous 
probability distributions. However, under the above 
assumption, the peak positions of the erroneous prob-
ability distributions would vary with each other because 
the noises are different depending on the sensor. Thus the 
erroneous probability distributions would have a negative 
correlation to others, and this system uses all probabil-
ity distributions. Although the proposed system cannot 
decrease the affection of the erroneous position informa-
tion, it is the same as the conventional system that fuses 
all probability distribution. Therefore this does not mean 
the proposed system is inferior to the conventional sys-
tem. The proposed system is suitable for fusing differ-
ent kind of sensors. Note that the proposed system must 
have three or more sensors for the relative evaluation.

Experimental results
We mention localization experiment results in some 
environments, and discuss the robustness of the pro-
posed system.

Experimental conditions
We conducted three localization experiments at Yakusa 
campus of Aichi Institute of Technology. The robot 
(Dongbu Robot TETRA DS-IV) was equipped with 
GPS (Hemisphere Cresent A101), omni camera (Vstone 
VSC450U-200-TK), and LiDAR (Hokuyo UTM-30LX) 
as shown in Fig.  5. Each sensor simultaneously got its 
data in every 0.2 s. After that, the probability distribu-
tion for each sensor is computed, then they are fused 
by the proposed system and the conventional system, 
without relative evaluation. We set N = 100, ρth = 0 
and computed estimated positions by MMSE. We 

measured the true robot’s position by using a laser 
range finder (Leica DISTO S910) set on the environ-
ment. The laser sensor was set on the point whose 
absolute position is acquired by using Google map. 
The laser sensor can correctly measure the distance 
between the sensor and the robot. Combining the dis-
tance with the relative direction measured by gyro sen-
sor in a laser sensor, the laser sensor can measure the 
relative position of the robot. The relative position was 
transformed to the global position using the laser sen-
sor’s absolute position.

The observation models of GPS, omni camera, LiDAR 
are normal distribution model[5], similar picture search-
ing using Bag of Features[31], point cloud matching, 
respectively, which are described as follows.

Observation model of GPS
As an observation model of GPS, we utilized the normal 
distribution model expressed by the following equation.

where pGPS and σGPS and are the GPS estimated position 
and the standard deviation of normal distribution. This is 
usually used for the GPS observation model. We reflect 
DRMS to the standard deviation, which is computed by 
the multiplication of HDOP and USRE.

(8)π

�

zGPSt , s
[n]
t

�

= exp






−

�

s
[n]
t − pGPS

�2

2σ 2
GPS







Fig. 5  Robot with GPS, omni camera, and LiDAR
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HDOP is the degradation value of the measurement 
accuracy of the horizontal space computed based on 
the arrangement of satellites. USER is the error value 
reflected the error cause of the GPS measurement (iono-
sphere and depending error). USER is set as 1.5 m.

Observation model of camera
As the observation model of the omni camera, similar 
picture searching of the Bag of Features (BoF) is used.

where L is the number of similar images, p(l)Camera is a 
position where the picture l is taken. Based on the simi-
larity of similar image sim(l) , the standard deviation of 
the normal distribution is computed as follows.

Equation (11) is a fitting result of the relationship of the 
similarity of the images and the distance between the 
picture position and the robot by non-linear function. 
The cluster of BoF is created by clustering the feature 
of Scale-Invariant Feature Transform (SIFT). We set a 
threshold of the similarity sim(l) to remove the affection 
of the non-similar images. Therefore, if there is no similar 
image in the BoF, the probability distribution becomes a 
uniform distribution.

(9)σGPS = HDOP ×UERE

(10)

π

�

zCamera
t , s

[n]
t

�
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L
�

l=1

exp
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
−

�

s
[n]
t − p

(l)
Camera

�2

2σ
(l)2
Camera







(11)σCamera = 10 exp−20.25sim(l)

Observation model of LiDAR
We implemented Point matching algorithm for LiDAR 
observation model.

where e is the sum of the distances between input points 
and matched reference points, and σLiDAR is the standard 
deviation of the LiDAR observation, set to 1/10−5.

Exp. I: The Road between Building
The first experiment was conducted at the road between 
buildings as shown in Fig. 6. The robot ran on the yellow 
arrow shown in Fig.  6. The result of localization errors 
in this experiment is shown in Fig. 7. In Fig. 7, the hor-
izontal axis shows time, and the vertical axis shows the 
localization errors: the distances between the estimated 
positions and the true positions. As shown in Fig. 7, the 
maximum localization error of the conventional system 

(12)π

(

z
(LiDAR)
t , s

[n]
t

)

= exp

(

−
e(l)

2σ 2
LiDAR

)

Fig. 6  Experimental environment (road between buildings)

Fig. 7  Localization errors in Fig. 6
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in the yellow rectangle term was higher than 6 m. On the 
other hand, the localization errors of the proposed sys-
tem were lower than 3 m in its term.

The probability distributions from sensors at 330 s 
obtained by the proposed system are shown in Fig. 8, and 
Table 1 shows the correlation table at 330 s.

In the distribution images in Fig.  8, gray and white 
areas represent occupied and unoccupied areas respec-
tively, and the depth of red represents the probability 
of the robot existence, and green circles show the true 
positions. Figure  8 show that the LiDAR’s and camera’s 
probabilities of particles within 1m from the true posi-
tion were higher than those of outside particles. On the 
other hand, the GPS’s probabilities of particles within the 
same area were lower than those of outside particles. This 
implies the GPS’s measurement was contaminated by a 

large disturbance and should be removed before a fusion 
step. Table 1 shows that the correlation efficient between 
the probability distributions from the LiDAR and camera 
exceeded ρth = 0 , thus the proposed system fused the 
probability distributions except the one from GPS. The 
proposed fusing method succeeded in decreasing the 
localization errors.

Exp. II: The Square
In the second experiment conducted at the square as 
shown in Fig. 9, the robot ran on the yellow arrow.

The result of localization errors in Fig.  10 shows the 
errors of the proposed system in the yellow rectangle 
term were lower than those of the conventional system. 
The probability distributions at 152 s in the proposed sys-
tem are shown in Fig. 11, and Table 2 shows the correla-
tion table at 152 s.

Figure  11 shows that the camera’s and GPS’s particles 
aside on the true position have higher probabilities than 
the others. On the other hand, the LiDAR’s particles aside 
on the true position have lower probabilities than the 
others. This implies the LiDAR’s measurement was con-
taminated by a large disturbance and should be removed. 
Table  2 shows that the correlation efficient between 
the probability distributions from the camera and GPS 
exceeded the threshold ρth = 0 , and those distributions 

Fig. 8  Probability distributions at 330 s in Fig. 6

Table 1  Correlation table at 330 s in Fig. 6

(threshold value ρth = 0)

GPS Camera LiDAR Lm Selection

GPS 1 − 0.784 − 0.424 1

Camera − 0.784 1 0.344 2 Use

LiDAR − 0.424 0.344 1 2 Use



Page 8 of 11Ohashi et al. Robomech J             (2021) 8:3 

Fig. 9  Experimental environment (square)

Fig. 10  Localization errors in Fig. 9

Fig. 11  Probability distributions at 152 s in Fig. 9

Table 2  Correlation table at 152 s in Fig. 9

(threshold value ρth = 0)

GPS Camera LiDAR Lm Selection

GPS 1 0.298 − 0.327 2 Use

Camera 0.298 1 − 0.364 2 Use

LiDAR − 0.327 − 0.364 1 1
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have positive correlations. Thus, the proposed system 
fused the probability distributions except the one from 
GPS and succeeded in decreasing the localization errors.

Exp. III: The Parking
In the third experiment conducted at the parking space 
as shown in Fig. 12, the robot ran on the yellow arrow.

The result of localization errors in Fig. 13 shows those 
of the proposed and conventional system were lower than 
1 m all times. The probability distributions at 254 s in the 
proposed system are shown in Fig. 14, and a correlation 
table at 254 s is shown in Table 3.

Fig. 12  Experimental environment (parking)

Fig. 13  Localization errors in Fig. 12

Fig. 14  Probability distributions at 254 s in Fig. 12
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Figure  14 shows that the GPS’s and LiDAR’s parti-
cles within 1m from the true position had high prob-
abilities. On the other hand, regarding the particles in 
the camera, every particle had same probability value, 
named uniform distribution. Uniform distribution 
means the sensor cannot identify the specific posi-
tion. In the parking lot where the experiment III was 
conducted, the arrangement of the cars were chang-
ing. When I made the environmental map, there were 
many cars. However, on the date when I conducted the 
localization experiment, there were few cars because 
it was the day-off of the university. Since the images 
captured in the localization were not matched to any 
images captured in the map, the camera could not 
identify the specific position. So probability distribu-
tion was set to a uniform distribution. The uniformed 
distribution does not affect to the fusion result. How-
ever, the localization only by the uniformed distribu-
tion would fail because it does not have any position 
information. Therefore, the proposed system must not 
select the only uniformed distribution observed by 
camera. Table  3 shows the proposed system was able 
to select the probability distributions of the LiDAR 
and GPS, so that the proposed system succeeded in 
localizing the same quality as the conventional system 
fusing all probability distributions.

Consideration
In the environment where one sensor has erroneous 
position information, the localization errors of the pro-
posed system were less than those of the conventional 
system. The proposed system successfully reduces the 
maximum localization errors from 6 m to 3 m. Moreo-
ver, in the environment where no sensor has erroneous 
position information, the localization errors of the pro-
posed system were nearly the same as those of the pre-
vious system. It is found that the proposed method can 
estimate the position with the same or higher accuracy 
as the conventional method when the pieces of position 
information from every sensor include erroneous ones. 
As a result, we confirmed the robustness of the proposed 
system.

Conclusion
In this paper, we have discussed the robustness of our 
proposed sensor fusion system by some experiments in 
various environments. Our proposed system detects and 
excludes erroneous position information by checking 
correlations between all of them, and fuses the rest. In all 
experiments, the localization errors of the proposed sys-
tem were lower or the same as those of the conventional 
system. We confirmed the effectiveness of the proposed 
system. As the future tasks, we plan to fuse other types 
of sensors and confirm whether or not the robustness 
improves as the number of sensors increases.
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