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Abstract 

A new approach to the active fault diagnosis (AFD) for input redundant plants is presented in this paper. A test signal 
which helps the diagnosis is injected to the plant in addition to nominal control input in the AFD typically. One 
feature of the proposed AFD is adaptive allocation of the test signal. The adaptive allocator which distributes the test 
signal and injects it to the redundant actuators is introduced in this paper. A fault-diagnosis (FD) system that estimates 
fault location and its magnitude from adaptive parameter of the adaptive allocator is constructed with a simple neural 
network (NN) model. Furthermore, a A fault-tolerant adaptive control system which includes the adaptive test signal 
allocator is designed based on the model reference adaptive control (MRAC) technique. The adaptive laws of the 
adaptive allocator and controller are derived by using a suitable Lyapunov function. By performing experiments using 
a two-input redundant plant, we show the effectiveness and applicability of the proposed AFD and MRAC system.
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Introduction
Many machine-based systems consist of actuators, sen-
sors, computers, and mechanical elements. The actuators 
play an important role in manipulating the plant states 
[1]. To improve the actuation and/or fault tolerance per-
formance, input-redundant systems have been developed 
which have one or more additional actuators [2–4]. Based 
on the fault tolerance of redundant plants, it is possible to 
eliminate the faulty influence on the system. For instance, 
a self-repairing control system converts faulty actuators 
into healthy ones, and fault accommodation is also per-
formed with the remaining healthy actuators in adaptive 
control systems [5–9]. From the perspective of system 
safety and maintainability, there is an increasing need to 
obtain information about the system health during oper-
ation [10, 11]. Therefore, a number of studies that address 
the fault-diagnosis (FD) problem have been developed 
[11–16]. Most of the fault-diagnosis methods that have 

been developed employ the passive approach. In the pas-
sive approach, by observing the system behavior using 
the available signals, it is possible to monitor the plant 
without affecting the system states.

On the contrary, the active fault diagnosis (AFD) 
method has been proposed, where an auxiliary signal 
(test signal) is used to improve the precision and speed 
of the diagnosis [12, 17]. In contrast to the passive fault 
diagnosis method, relatively few studies have focused on 
the active method [17]. In the literature [18], Takahashi 
proposed an algorithm for fault detection using a weak 
test signal for a system that has a redundant actuator. In 
the FD system which was developed by Ducard et al., the 
supervision module uses a test signal to help the FD pro-
cess [19]. However, when the test signal is used for diag-
nosis, it also decreases the performance of the control 
system [20, 21].

On the other hand, it is known that it is possible to 
inject an arbitrary signal into an input-redundant plant 
without affecting the plant states [22–24]. In the litera-
ture [22], Elgarsma et al. proposed a method to identify 
the plant parameters by using the test signal without 
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affecting the attitude of the aircraft, based on the input 
redundancy. This idea has been applied to the AFD tech-
nique, and there are several related studies of this appli-
cation in the field of aircraft control [25–28].

Bateman et al. proposed an AFD method in which the 
test signal is inputted into the null-space of the input 
coefficient matrix [25]. In the FD system reported in lit-
erature [25], the test signal affects the plant states only 
when a fault occurs. A supervisor performs the fault 
diagnosis using the test signal response that becomes 
visible immediately after the fault occurrence. The AFD 
method with input redundancy is described schemati-
cally in “Outline of conventional AFD” section. One 
drawback of this method is that the null-space injection 
requires the precise plant parameters related to the input 
coefficient matrix. Moreover, it is not clear how the sys-
tem stability is influenced by the test signal during the 
fault occurrence and its compensation. In the literature 
[28], Boskovic proposed a control system design that 
ensures the plant stability under the test signal injection, 
even if an actuator has a fault. However, the study in [28] 
did not refer to a specific AFD method.

We propose a new AFD method with input redun-
dancy in this paper based on the, and design a control 
system proposed in the literature [29] to implement it 
in this paper. In the literature [29], we have designed an 
adaptive control system that guarantees reference model 
tracking while applying arbitrary bounded test signals for 
the input redundant system with unknown parameters. A 
feature of the proposed AFD method is adaptive alloca-
tion of the test signals in the control system. One adap-
tive test signal allocator is placed for a pair of redundant 
actuators. Therefore, the number p of adaptive allocators 
is p = m!/(2!(m− 2)!) when the controlled plant has m 
redundant actuators. The effectiveness ratio of a pair of 
redundant actuators can be estimated from the adap-
tive parameter in the corresponding adaptive allocator. 
We define the ratio as a feature value R for the proposed 
AFD process. The fault location can be estimated from 
an increase or decrease of the feature value R. And fault 
magnitude also can be estimated from the convergent 
value of R. A simple NN (neural network) model that 
describes the relation between the feature value R and 
both the estimated fault location and its magnitude is 
introduced in the proposed AFD system. The AFD sys-
tem design is described in “Design of AFD system based 
on adaptive parameters” section. The novelty of the pro-
posed AFD method is to place the adaptive allocator for 
each pair of the redundant actuators. The fault diagno-
sis for the individual actuator can be achieved with such 
the placement of adaptive allocators. The feature of the 
proposed AFD compared with the conventional one is 
described in “Proposed AFD using adaptive allocator” 

section. Furthermore, a fault-tolerant adaptive control 
system which includes the adaptive test signal allocator 
is designed for the faulty model in “Plant representation 
with actuator fault” section. In “Plant representation with 
actuator fault” section, we introduce the plant represen-
tation with actuator fault. The proposed control system 
design for the faulty model is based on the model refer-
ence adaptive control (MRAC) technique. In “Fault-tol-
erant adaptive control design with adaptive allocator” 
section, we show the derivation of the adaptive law for 
the controller and allocator using a suitable Lyapunov 
function [29]. The adaptive laws of the adaptive allocator 
and controller are derived by using a suitable Lyapunov 
function, in “Fault-tolerant adaptive control design with 
adaptive allocator” section.

We verify the effectiveness and applicability of the 
designed control system and proposed AFD system, 
through the experiments using a two-input redundant 
machine-based plant, in “Experimental example” section. 
The conclusions are described in “Conclusion” section.

AFD with input redundancy
Outline of conventional AFD
Figure 1 illustrates the schematic of the AFD with input 
redundancy in a two-input redundant plant. In this fig-
ure, the test signal τ is injected through a pre-designed 
allocator α. This allocator α is chosen such that its direc-
tion is orthogonal to the plant input coefficient vector, 
b. When no actuators have any fault, only the part of 
control effort caused by the test signal is canceled out 
in the total control effort, E

(

:= bTu
)

 , and the states and 

Fig. 1  Schematic of an active fault diagnosis with constant test signal 
allocator (an example of a two-input redundant first-order plant)
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output of the plant are not affected by the test signal. In 
the case where an actuator has a fault, it is seen that the 
coefficient vector b changes to a faulty one b′ in the faulty 
model representation. Based on the assumption that the 
faulty vector b′ satisfies b′Tα = 0 , the test signal τ will be 
not canceled out, and its effect appears on the plant out-
put. In other words, the test signal has a symptom that is 
caused by the actuator fault on the plant output. The con-
ventional AFD is performed from the symptom, available 
signals in the control system, and prior knowledge about 
the plant. However, it also means that the plant output is 
affected by the test signal when a fault occurrs. There is a 
trade-off between the FD performance and the stability 
of the plant output, in the conventional AFD method.

Proposed AFD using adaptive allocator
The proposed AFD method is not based on the fault 
symptom on the plant output in contrast to the con-
ventional one. In proposed AFD (Fig. 2), the test signals 
are injected consistently through the adaptive allocator 
to the redundant actuators. The proposed AFD is per-
formed from the behavior of adaptive parameter of the 
allocator and available signals in the control system. The 
stability of the plant output is ensured by the suitable 
adjusting of the adaptive allocator and adaptive controller 
in the proposed method. Both to guarantee the stability 
of plant output and to perform the AFD can be achieved 
simultaneously, in the proposed method. Therefore, the 
proposed method can perform AFD for the input redun-
dant plant without obtaining parameters of b.

Plant representation with actuator fault
We consider the following linear plant:

where x(t) ∈ Rn and u(t) ∈ Rm are the plant output 
and input, respectively. Matrices A,B have appropriate 
dimensions, and can be represented as follows:

(1)ẋ(t) = Ax(t)+ Bu(t)

where 0 denotes a zero matrix which has dimension 
(n− 1)×m , a2 ∈ Rn and b ∈ Rm are unknown coef-
ficient vectors, but that A1 ∈ R

(n−1)×n is a known sub-
matrix, and the signs of each component in vector b are 
known. We assume that the known matrix A1 makes the 
following square matrix A0 stable, by suitable selection of 
the vector am ∈ Rn.

For example, the (n− q)-th order systems that have 
q(< n) integrators, or n-th order systems with relative 
degree n can be considered as plants that satisfy the 
above conditions. In these systems, matrix A1 becomes 
known from its specific structure, and the plant param-
eters that may be unknown are in the vectors a2 and b.

The fault on the actuator is represented by u(t) as

where uc ∈ Rm is the controller output, and ū ∈ Rm is 
the fault input signal, which depends on the type of fault 
described later. Λ ∈ R

m×m is an unknown fault-magni-
tude matrix. We define each element �i, (i ∈ {1, 2, · · · ,m}) 
in diagonal matrix Λ as the effectiveness of the actuator.

In this study, we focus on the following two types of 
actuator fault.

Loss of effectiveness
The loss of effectiveness (LOE) of the i-th actuator is rep-
resented with �i as:

where tf (i) ∈ R, (tf (i) > 0) is the unknown time at which 
the fault occurs. i ∈ {1, 2, · · · ,m} is the unknown index 
which denotes the faulty actuator, di ∈ R, (0 ≤ di < 1) 
is also an unknown parameter that represents the effec-
tiveness of the faulty actuator. For instance, tf (2) = 50[s] , 
d2 = 0.6 means that the second actuator loses its effec-
tiveness of 40% after 50[s].

(2)A =

[

A1

aT2

]

, B =

[

0

bT

]

(3)A0 =

[

A1

aTm

]

(4)u(t) = Λuc(t)+ ū(t),

Λ = diag{�1, �2, . . . , �m},

uc =
[

uc(1)uc(2) · · ·uc(m)

]T
,

ū = [ū1ū2 · · · ūm]
T

(5)�i(t) =

{

1
(

t < tf (i)
)

d
(

t ≥ tf (i)
) , ū = 0, ∀t > 0

Fig. 2  Proposed active fault diagnosis and fault-tolerant control with 
adaptive test signal allocator
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Stuck actuator output
The stuck fault of the actuator may be caused by the freez-
ing of the electronic motor driver and solidified valve for 
instance. The stuck fault is represented as follows.

From the above representation, we note that the effec-
tiveness of the stuck actuator is always zero. Therefore, the 
case where the actuator loses its effectiveness completely 
(di = 0, ū = 0) can be considered as a special case in the 
stuck fault. After this section, we apply the word perfect 
LOE fault to the fault represented by di = 0 , and we also 
apply the word partial LOE fault to the fault represented by 
0 < di < 1.

Fault‑tolerant adaptive control design 
with adaptive allocator
In this section, we describe the design of an fault-tolerant 
adaptive control system with an adaptive allocator for test-
signal injection and actuator faults [29]. For the system 
design, we considered the following assumptions:

1.	 Each actuator may have a fault that is expressed by 
either (i) or (ii) in “Plant representation with actuator 
fault” section.

2.	 At least one actuator has not perfect LOE fault.
3.	 All of the plant outputs are available to generate the 

control input signal.

The control system design is shown in the following three 
subsections. First, a stable reference model and adaptive 
controller are introduced in “Output tracking error equa-
tion” section. The output tracking error equation which 
represents the difference of plant output and reference 
model output is derived using the reference model and the 
adaptive controller. In “Adaptive allocator design for test 
signals” section, the adaptive test signal allocator is intro-
duced. Finally, the adaptive laws of the adaptive test signal 
allocator and adaptive controller are derived from a suit-
able Lyapunov function in subsection 4.3.

Output tracking error equation
Equation (1) can be represented using (2) and (4) as:

where x1 ∈ R
n−1 and x2 ∈ R are parts of the output vec-

tor x.

(6)

�i(t) =

{

1
(

t < tf (i)
)

0
(

t ≥ tf (i)
) , ūi(t) =

{

0
(

t < tf (i)
)

uc(i)
(

tf (i)
) (

t ≥ tf (i)
) , ∀t > 0

(7)
{

ẋ1(t) = A1x(t)

ẋ2(t) = aT2 x(t)+ bT {Λuc(t)+ ū(t)}

(8)x(t) =
[

xT1 (t) x2(t)
]T

We introduce a stable reference model with known 
matrix A1,

where xm ∈ R
n is the output of the reference model, and 

xm(1) ∈ R
n−1 and xm(2) ∈ R are the components of refer-

ence model output vector. r ∈ R is an arbitrary bounded 
input signal for the reference model, and bm ∈ R is an 
arbitrary coefficient constant. The vector am ∈ R

n is 
selected such that the matrix A0 in (3) becomes stable.

Boskovic proposed the following controller to design a 
stable MRAC system for such the plant and the reference 
model which are represented in (7) and (9), in the literature 
[5].

where L ∈ R
m is the constant allocation vector. θ1 ∈ Rn , 

θ2 ∈ R and ξ ∈ R are the adaptive parameter vector and 
adaptive parameter, respectively. The adaptive laws of the 
adaptive parameters θ1 , θ2 , and ξ have been presented in 
[5].

In this paper, we propose the following controller which 
is extended from (10).

where L ∈ Rm is a constant vector that satisfies 
bTΛL > 0 . θ1 ∈ Rn , θ2 ∈ R and ξ ∈ R are also the adap-
tive parameter vector and adaptive parameters, respec-
tively. Each element τq(t),(q = 1, 2, · · · , p) in vector τ is an 
arbitrary bounded test signal, and they are independent 
of each other. α(Φ(t)) ∈ R

m×p is the adaptive allocator 
matrix for the test signal, and Φ(t) ∈ Rp is the adaptive 
parameter vector.

Substituting (11) into (7), we obtain

We define the tracking error e = x − xm , and derive its 
time derivative.

From (9) and (12), the first row of (13) can be written as:

We calculate the second row of (13) as:

(9)
{

ẋm(1)(t) = A1x1(t)

ẋm(2)(t) = aTmxm(t)+ bmr(t)

(10)uc(t) = L
{

θT1 x(t)+ θ2r(t)+ ξ(t)
}

(11)
uc(t) = L

{

θT1 x(t)+ θ2r(t)+ ξ(t)
}

+ α(Φ(t))τ (t)

(12)

{

ẋ1(t) = A1x(t)

ẋ2(t) = aT2 x(t)+ bT
{

ΛL
(

θT1 x + θ2r + ξ
)

+Λατ + ū(t)
}

(13)ė = ẋ − ẋm =

[

ẋ1 − ẋm(1)

ẋ2 − ẋm(2)

]

(14)ẋ1 − ẋm(1) = A1x − A1xm = A1e
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We introduce the following variables

where we set the variable κ as:

From the assumption, it satisfies κ > 0.
Using these variables, we rewrite (15) as:

Hence (13) can be represented as:

Adaptive allocator design for test signals
Basic idea for adaptive allocator
We now consider the following two-input redundant plant.

The part of the input vector u that is orthogonal to the 
plant coefficient vector b

(

:= [b1, b2]
T
)

 , becomes 0 in the 
step to generate the control effort E = bTu . In other words, 
the orthogonal part of the input vector for the plant-coeffi-
cient vector does not affect the plant output x . Therefore, 
aiming for null-space injection, we design the controller 
output as:

where the function f (x, xm, r) generates a nominal con-
trol input, and where x , xm , and r are the feedback of 
the plant output, reference model output, and refer-
ence input, respectively. τ is the test signal that should 
be canceled out on the plant output, α(θ) is the adaptive 

(15)

ẋ1 − ẋm(1) =aT2 x + bT
{

ΛL
(

θT1 x + θ2r + ξ

)

+Λατ + ū(t)
}

−
(

aTmxm + bmr
)

=
(

aT2 x + bTΛLθT1

)

x

+
(

bTΛLθ2 − bm

)

r + bT(ΛLξ + ū)+ bTΛατ − aTm(x − e) = aTme +
(

aT2 + bTΛLθT1 − aTm

)

x

+
(

bTΛLθ2 − bm

)

r + bT(ΛLξ + ū)+ bTΛατ

�θT1 =
(

aT2 + bTΛLθT1 − aTm

)/

κ

�θ2 =
(

bTΛLθ2 − bm

)/

κ

(16)�ξ = bT (ΛLξ + ū)
/

κ

(17)κ = bTΛL, κ ∈ R.

(18)
ẋ2 − ẋm(2) = aTme + κ�θT1 x + κ�θ2r + κ�ξ + bTΛατ

(19)

ė =

[

A1e

aTme + κ�θT1 x + κ�θ2r + κ�ξ + bTΛατ

]

(20)ẋ = Ax +
[

b1 b2
]

u, u =
[

u1 u2
]T

(21)
u = f (x, xm, r)+ α(θ)τ , α(θ) =

[

cos θ sin θ
]T

allocator, and where θ is adaptive parameter. Figure  3 
shows an allocator vector α and coefficient vector b in a 
two-dimensional (2D) plane. As shown in this figure, the 
allocator vector α has a constant norm, and can change 
its direction. If the b⊥α(θ) can be satisfied by adjust-
ing the parameter θ , then the effect on the plant outputs 
caused by the test signal will be removed.

In this section, we design the test signal allocator for 
the m-input plant based on the 2D rotary allocator. In 
the allocator design, m redundant actuators are divided 
into all possible pairs, and the 2D allocators are assigned 
to these. Therefore, the number p of test-signal allocators 
and test signals is:

For ease of explanation, we begin from the three-input 
plant in the next section.

Allocator design for three‑input plant
In the case of ( m = 3 ), let the input coefficient vector b(3) 
be b(3) = [b1, b2, b3]

T . Let the pairs b1–b2 , b1–b3 , and b2
–b3 be the possible combinations in elements of b(3) . 

(22)

ẋ = Ax + bT
{

f (x, xm, r)+ α(θ)τ
}

= Ax + bT f (x, xm, r)+ 0 · τ

= Ax + bT f (x, xm, r)

(23)p =
m!

2!(m− 2)!

Fig. 3  Test signal allocator α which rotates by adaptive parameter θ , 
and coefficient vector b of the two-input redundant plant
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Corresponding to these three pairs, we introduce the 3rd 
order test signal vector as:

Then, we choose an allocator α(3) as follows.

Using these definitions, the coefficient part of the 
test-signal term bTΛα in (19) can be expanded with 
Λ(3) = diag{�1, �2, �3} as:

We now define the following 2D vectors,

Substituting the elements in (26) by the inner products 
of these vectors,

The Eq.  (29) indicates that the coefficients from test 
signals to the control effort can be represented using 2D 
allocators ᾱ1 , ᾱ2 , and ᾱ3.

Allocator design for m‑input plant
According to the result in “Allocator design for three-
input plant” section, an allocator matrix can be chosen 
as follows to assign the 2D allocators to the m redundant 
actuators.

The test signal vector is:

(24)τ(3)(t) =
[

τ1(t) τ2(t) τ3(t)
]T

.

(25)

α(3)
�

Φ(3)(t)
�

=





cosφ1(t) cosφ2(t) 0
sinφ1(t) 0 cosφ3(t)

0 sin φ2(t) sin φ3(t)





(26)

bT(3)Λ(3)α(3) = bT(3)





�1 cosφ1(t) �1 cosφ2(t) 0
�2sinφ1(t) 0 �2 cosφ3(t)

0 �3 sin φ2(t) �3 sin φ3(t)





=





(b1�1 cosφ1 + b2�2sinφ1)
(b1�1 cosφ2 + b3�3sinφ2)
(b2�2 cosφ3 + b3�3sinφ3)





T

(27)
b̄1 =

[

b1�1 b2�2

]T
, b̄2 =

[

b1�1 b3�3

]T
, b̄3 =

[

b2�2 b3�3

]T
.

(28)ᾱq =
[

cosφq(t) sin φq(t)
]T

, q = 1, 2, 3

(29)bT(3)Λ(3)α(3) =
[

b̄T1 ᾱ1 b̄T2 ᾱ2 b̄T3 ᾱ3
]

(30)

α(Φ) =

























cosφ1 cosφ2 0 0 0

sinφ1 0 cosφ3
...

...

0 sinφ2 sinφ3 · · · 0
...

... 0 0 cosφp−1 0

...
...

... 0 cosφp
0 0 0 sinφp−1 sinφp

























From these difinitions, we expand the test signal term in 
a similar way in the case of (m = 3) as:

In addition, each element can be represented by the inner 
product of 2D vectors:

where the 2D vectors are defined as follows:

Figure 4 shows vectors b̄q and ᾱq on a 2D plane, where 
q ∈ {1, 2, . . . , p} . By using an angle φ̄q that is defined by 
the vectors shown in Fig. 4, (33) can be represented as:

where the norm condition ᾱq = 1, (∀q ∈ {1, 2, . . . , p}) 
is used. Furthermore, we define the φ̃q as follows.

(31)τ(t) =
[

τ1(t) τ2(t) τ3(t) · · · τp−1(t) τp(t)
]T

.

(32)

bTΛα =

















(b1�1 cosφ1 + b2�2sinφ1)
(b1�1 cosφ2 + b3�3sinφ2)
(b2�2 cosφ3 + b3�3sinφ3)

...
�

bm−2�m−2 cosφp−1 + bm�msinφp−1

�

�

bm−1�m−1 cosφp + bm�msinφp
�

















T

(33)bTΛα =
[

b̄T1 ᾱ1 b̄T2 ᾱ2 · · · b̄Tp−1ᾱp−1 b̄Tp ᾱp

]

(34)

b̄1 =
[

b1�1 b2�2
]T

, b̄2 =
[

b1�1 b3�3
]T

, . . . ,

b̄p−1 =
[

bm−2�m−2 bm�m
]T

, b̄p =
[

bm−1�m−1 bm�m
]T

,

(35)ᾱq =
[

cosφq(t) sin φq(t)
]T

, q = 1, 2, . . . , p

(36)

bTΛα =
[

b̄1ᾱ1 cos φ̄1 b̄2ᾱ2 cos φ̄2 · · ·

· · · b̄p−1ᾱp−1 cos φ̄p−1 b̄pᾱp cos φ̄p
]

=
[

b̄1 cos φ̄1 b̄2 cos φ̄2 · · ·

· · · b̄p−1 cos φ̄p−1 b̄p cos φ̄p
]

Fig. 4  Relation between vector b̄q of controlled plant and adaptive 
vector ᾱq

(

φq
)
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Using this definition, we rewrite (36) as:

Therefore, the test signal term can be represented as:

where we used the denotations of:

When the actuators have no fault, matrix N  is positive 
definite from the assumption that all of the elements in 
vector b are non-zero. Even if (m− 1) actuators have par-
tial/perfect LOE fault, then the matrix is positive or semi-
positive definite.

Adaptive law design
Equation (19) is rewritten using (39) as:

where µ and b0 are as follows.

From the assumption that matrix A0 is stable, the posi-
tive definite symmetric matrix solution P ∈ R

n×n exists 
in the Lyapunov equation:

(37)φ̃q(t) =
1

2
π − φ̄q(t), q = 1, 2, . . . , p

(38)
bTΛα =

[

b̄1 sin φ̃1 b̄2 sin φ̃2 · · ·

· · · b̄p−1 sin φ̃p−1 b̄p sin φ̃p
]

(39)bTΛα = STNτ

(40)S =
[

sin φ̃1 sin φ̃2 · · · sin φ̃p−1 sin φ̃p
]T

(41)N = diag
{

b̄1, b̄2, . . . , b̄p−1, b̄p

}

.

(42)

ė =

[

A1e

aTme + κ�θT1 x + κ�θ2r + κ�ξ + STNτ

]

= A0e + b0µ(t),

(43)µ = κ�θT1 x + κ�θ2r + κ�ξ + STNτ ,

(44)b0 =
[

0 · · · 0 1
]T

, b0 ∈ R
n

where Q ∈ R
n×n is a positive definite symmetric matrix. 

We now define a scalar function V  with matrix P as:

where S̄ ∈ R
p is defined as follows.

S̄ is obtained by replacing the φ̃q , (q = 1, 2, . . . , p) with 
φ̃q/2 in (40). Matrices Γθ = diag

{

γθ(1), γθ(2), . . . , γθ(n)
}

 
and ΓΦ = diag

{

γφ(1), γφ(2), . . . , γφ(n)
}

 in (46) are chosen 
as arbitrary positive definite.

We derive the time derivation of (46) as:

From (42) and (45), the first term on the right-hand 
side of (48) can be represented as:

Then, the rightmost term on the right-hand side of (48) 
can be varied as:

(45)AT
0 P + PA0 = −Q

(46)

V (t) =
1

2
eTPe +

κ

2
�θT1 Γ −1

θ �θ1 +
κ

2γθ
�θ22

+
κ

2γξ
�ξ2 + 2S̄TNΓ −1

Φ S̄

(47)
S̄ =

[

sin 1
2 φ̃1 sin 1

2 φ̃2 · · · sin 1
2 φ̃p−1 sin 1

2 φ̃p
]T

(48)

V̇ (t) =
1

2

d

dt

(

eTPe
)

+ κ�θT1 Γ −1
θ �θ̇1 +

κ

γθ
�θ2�θ̇2

+
κ

γξ
�ξ�ξ̇ + 2

d

dt

(

S̄TNΓ −1
Φ S̄

)

(49)

1

2

d

dt

(

eTPe
)

=
1

2

{

ėT Pe + eTPė
}

=
1

2

{(

eTAT
0 + bT0 µ

)

Pe + eTP(A0e + b0µ)
}

=
1

2

{

eT
(

AT
0 P + PA0

)

e + 2bT0 Peµ
}

= −
1

2
eTQe + bT0 Peµ.
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In the variation of the bottom expression, we used the 
well-known trigonometric formula 2 sin θ cos θ = sin 2θ . 
The denotation Φ̃ ∈ R

p is expressed as:

From the expressions of (49) and (50), we can write (48) 
as:

Substituting µ of (43) into (52) equation, we obtain:

Note that bT0 Pe becomes scalar in derivation of (53).
We adjust the adaptive parameters θ1, θ2, ξ and Φ ss by 

using equations:

where vectors Φ , Φ̄ ∈ R
p are as follows.

(50)

2
d

dt

�

S̄TNΓ −1
Φ S̄

�

=2 · 2S̄TNΓ −1
Φ

˙̄S

= 2 · 2S̄TNΓ −1
Φ

















�

˙̃
φ1/2

�

cos
�

φ̃1/2
�

�

˙̃
φ2/2

�

cos
�

φ̃2/2
�

...
�

˙̃
φp/2

�

cos
�

φ̃p/2
�

















= 2
�

sin 1
2 φ̃1 cos

1
2 φ̃1 sin 1

2 φ̃2 cos
1
2 φ̃2 · · ·

· · · sin 1
2 φ̃p cos

1
2 φ̃p

�

NΓ −1
Φ













2













˙̃
φ1/2
˙̃
φ2/2
...

˙̃
φp/2

























= STNΓ −1
Φ

˙̃
Φ

(51)Φ̃ =
[

φ̃1 φ̃2 · · · φ̃p
]T

.

(52)

V̇ (t) =−
1

2
eTQe + bT0 Peµ+ κ�θT1 Γ −1

θ �θ̇1

+
κ

γθ
�θ2�θ̇2 +

κ

γξ
�ξ�ξ̇ + STNΓ −1

Φ
˙̃
Φ →

(53)

V̇ (t) =−
1

2
eTQe + κ�θT1

(

bT0 Pex + Γ −1
θ �θ̇1

)

+ κ�θ2

(

bT0 Per +
1

γθ
�θ̇2

)

+ κ�ξ

(

bT0 Pe +
1

γξ
�ξ̇

)

+ STN
(

bT0 Peτ + Γ −1
Φ

˙̃
Φ

)

(54)

θ̇1
(

= �θ̇1
)

= −Γθb
T
0 Pex, θ̇2

(

= �θ̇2
)

= −γθb
T
0 Per,

ξ̇
(

= �ξ̇
)

= −γξb
T
0 Pe, Φ̇

(

= ˙̄Φ = − ˙̃
Φ

)

= ΓΦb
T
0 Peτ

Substituting (54) into (56), we obtain:

It is clear that V̇ ≤ 0 , because matrix P is positive defi-
nite, as given in (45). Therefore, the scalar function V  is 
positive definite and non-increasing for time t , and the 
signals e,�θ1,�θ2,�ξ are bounded, as is the case with 
adaptive parameters θ1, θ2, ξ from (16). Based on the fact 
that V  is positive definite and non-increasing, as well as (56), 
there exists 

∞
∫
0
V̇dt =

∞
∫
0

{

−eTPe/2
}

dt = V (∞)− V (0) ,  

which is a finite value, so e ∈ L2 . Moreover, the plant 
output x is bounded, and from that, reference model out-
put xm is bounded in e = x − xm . From (42) and the fact 
that signals �θ1, �θ2, �ξ , x, r and the test signal term 
STNτ are bounded, ė is also bounded. By using Barbalat’s 

(55)Φ =
[

φ1 φ2 · · · φp
]T

, Φ̄ =
[

φ̄1 φ̄2 · · · φ̄p
]T

(56)V̇ (t) = −
1

2
eTQe

Fig. 5  Block diagram of the proposed fault-tolerant adaptive control 
system
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lemma, we obtain e → 0 at time t → ∞ because e ∈ L2 
and its derivative ė are bounded.

We now discuss the boundedness of the adaptive 
parameter vector Φ . From (54), Φ can be given as:

where Φ(0) is an arbitrary bounded initial value vector. 
Hence, the test signal and the error signal e are bounded, 
and the first term on the right-hand side of the above 
equation is bounded. From these facts, it is under-
stood that the vector Φ is bounded. We summarize the 
designed MRAC system, as shown in Fig. 5.

Design of AFD system based on adaptive 
parameters
In this section, we present a new approach for AFD with 
input redundancy, and the design process of the AFD 
system is discussed.

Basic idea
In (34), we introduced the vector b̄q , which corresponds 
to a pair of redundant actuators. Figure 6 shows b̄q on the 
2D plane. We assume that the vector b̄q corresponds to a 
pair of the i th and j( = i) th actuators. Figure 6a shows the 
fault-free case, so each element of b̄q is equal to bi and bj.

We consider the case where either the i th or j th actua-
tor has a fault. As shown in Fig. 6b, the nominal vector b̄q 
changes to faulty vector b̄′q after the fault occurrence. This 
change in the vector differs depending on the faulty loca-
tion and its magnitude. Therefore, it is possible to estimate 
the faulty location and its magnitude if the vector b̄′q is 
known, and if its change can be monitored precisely.

However, the plant parameters bi, bj and faulty parame-
ters �i, �j are generally unknown, so b̄q cannot be obtained 
directly. Therefore, our idea is to monitor only the direc-
tion of b̄q . Figure 7 again shows the changes of vector b̄q 
from the perspective of its direction. arg(·) refers to the 
argument of the vector, and N (·) is the null-space of the 
vector. From Fig. 7b, it is clear that the changes of direc-
tion also differ depending on the fault location and its 
magnitude.

Feature value for ratio of control effectiveness
To monitor the direction of vector b̄q indirectly, we used 
the adaptive parameter φq , which refers to the argument 
of allocator vector ᾱq . In this section, we introduce a fea-
ture value for fault diagnosis from the adaptive parameter 
φq.

To discuss the feature value, we assume that the fol-
lowing are satisfied on the designed MRAC system in 

(57)Φ = ∫
(

ΓΦb
T
0 Peτ

)

dt +Φ(0)

Fig. 6  Changes of vector b̄ by corresponding fault patterns

Fig. 7  Changes to vector b̄q caused by corresponding fault patterns 
with argument θ̄
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“Fault-tolerant adaptive control design with adaptive 
allocator” section.

1.	 When sufficient time has passed from the time the 
control is started, tracking error e converges to 0 , and 
its time derivative ė also converges to 0.

2.	 We assume that the reference input r is a step-like 
signal, so ṙ = 0 is satisfied when sufficient time has 
passed.

3.	 A fault that is represented in (5) or (6) may occur in 
one actuator. In other words, only one actuator may 
have a fault, and the remaining ones are fault-free at 
every moment.

Next, based on these assumptions, we show that the 
adaptive allocator ᾱq indicates an orthogonal direction to 
vector b̄q.

When sufficient time has passed from the start of the 
control operation, the following equation is held from the 
assumption 1) and (42).

Then, based on assumption (1) and (54), each time 
derivative of the adaptive parameter is as follows.

The time derivative of (58) can be calculated from the 
above results and assumption (2) as follows:

For the test signals in which its time derivatives are 
bounded and independent of each other, S = 0 is needed 
to satisfy the above equation. Therefore, the adaptive 
parameter satisfies,

(58)0 = κ

(

�θT1 x +�θ2r + κ�ξ

)

+ STNτ

(59)�θ̇1 = 0,�θ̇2 = �ξ̇ = 0, Φ̇

(

= ˙̃
Φ

)

= 0

(60)0 = STN τ̇

where nq ∈ Z is an integer corresponding to index q . 
From (61) and (37), we obtained the following relations.

We found that the allocator ᾱq is orthogonal to the vec-
tor b̄q when the above equation is satisfied.

Figure 8 shows the plot of ᾱq which corresponds to vec-
tor b̄q . When ᾱq is orthogonal to the vector b̄q , vector b̄q 
can be expressed as follows.

(61)φ̃q = nqπ , ∀q = {1, 2, . . . , p}.

(62)
φ̃q =

1

2
π − φ̄q = nqπ

− φ̄q =
π

2

(

2nq − 1
)

Fig. 8  Alternative representation of b̄ with adaptive parameter φ 
based on the orthogonal condition b̄⊥ᾱ

Fig. 9  System diagram of the MRAC and fault-diagnosis unit

Fig. 10  Fault-diagnosis Unit
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Using this expression, we can calculate the ratio 
Rq , ∀q ∈ {1, 2, . . . , p} of the first element in the vector 
b̄q as:

This result means that it is possible to obtain the 
ratio of i th control effectiveness in a pair of i th and j th 
redundant actuators using only the adaptive parameter 
φq . Moreover, from the assumption (3), increasing or 
decreasing of a ratio Rq can be considered as the fault 
in i th or j th actuator.

FD system design
We calculated the proposed feature value R in (64) 
from the adaptive parameter, and the discussion for 
R has been based on the steady state of the system. In 
actual case, the adaptive parameter based feature value 
R may be moved in response to the disturbance, and 
there exists the transient state during system operation. 
Therefore, we should utilize other available signals in 
addition to the feature value R , in the FD process.

We constructed a classifier of an actuator fault using the 
machine-learning technique. Therefore, the proposed AFD 
system requires a preliminary experiment for the learning.

The overview of the proposed MRAC system with the 
AFD module is illustrated in Figs.  9 and 10a shows the 
schematic of the proposed AFD system. This AFD system 
outputs the fault diagnostic information f  by monitoring 
the signals e, r, ẋm and φ . The diagnostic information f  
has two elements as follows:

where î,
(

î ∈ {0, 1, . . . ,m}
)

 is the estimated fault loca-
tion, and �̂i is the estimate of the fault magnitude of the î-
th actuator. When it is seen that no actuator has any fault, 
then the î indicates î = 0.

NN‑based fault estimator
The core of the fault-diagnosis module is the NN model 
shown in Fig.  10b. Because the nonlinear relation-
ship between fault magnitude and the feature value, 

(63)

b̄q =
[

bi�i bj�j
]T

= b̄q
[

sin φq − cosφq
]T

(

or = b̄q
[

− sin φq cosφq
]T

)

(64)

Rq =
(�ibi)

2

(�ibi)
2 +

(

�jbj
)2

=
b̄2 sin2 φq

b̄2
(

sin2 φq + cos2 φq
) = sin2 φq

(65)f =
[

f1 f2
]T

=
[

î �̂i

]T

we use the NN model which is known to be effective in 
approximating nonlinear functions as a failure estimator 
in this paper. In this study, we used the extreme learn-
ing machine (ELM) technique [30, 31] to learn the NN 
model. ELM is a machine-learning method that was pro-
posed by Huang et  al. One of the major advantages of 
ELM is that it does not perform the repeated calculation 
for the learning. Another advantage is the simple struc-
ture of the NN model, as shown in Fig. 10b.

NN model output Y = [y1, y2, . . . , y2m]
T, Y ∈ R

2m is 
given as:

where βi =
[

βi(1),βi(2), . . . ,βi(z)
]T is the output weight-

ing vector from the hidden layer to the output layer. 
z, (z ∈ Z, z > 2m) is the number of nodes in the hid-
den layer, and it is one of the design parameters of ELM. 
Input signal X ∈ Rv of the NN model is represented as:

where k ∈ Z refers to the step number of discrete time. 
The order v of vector X becomes v = (n+ p+ 2) from 
(67). In this study, we used the following sigmoid func-
tion as the activating function h(X).

(66)yi = h(X)βi, ∀i ∈ {1, 2, . . . , 2m}

(67)
X(k) =

[

e(k) r(k) ẋTm(k) RT (k)
]T

,

R(k) =
[

R1(k) R2(k) · · · Rp(k)
]T

(68)hi(X) =
1

1+ exp
(

−As(i)X − Bs(i)

)

Fig. 11  Pseudo code of the fault detection and isolation, and 
magnitude estimation
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where As(i) ∈ R
v and Bs(i) ∈ R

v are the parameters that 
characterize the activating function. These parameters 
are randomly determined once, and are not recon-
structed. The weighting vector βi is calculated as follows:

where C is a positive scalar that is given by the designer. 
H and Ȳi are respectively the output matrix and correct 
data vector corresponding to the learning data X̂ , and 
they are given as follows:

where nt is the number of samples that is included in the 
learning data, so H ∈ R

nt×z , Ŷi ∈ R
nt.

In the ELM learning, the weighting parameters As(i) , 
Bs(i) among the input layer and hidden layer are not 
reconfigured, and the weighting parameters βi can be 
determined uniquely using (69). Therefore, if the order 
of the learning data is not large, the learning step can be 
completed quickly, and the computation time is short

FD algorithm
Figure  11 shows the FD algorithm that outputs the FD 
result from the output of the NN model. First, the algo-
rithm selects the maximum of yj ∈ {1, 2, . . . ,m} in Y  , and 
names it i . If the sign of yi is positive, then the i-th actuator 
is assumed to be faulty and i is assigned to f1 . Furthermore, 

(69)βi = HT

(

I

C
+HHT

)−1

Ȳi

(70)
H =

[

hT
(

X̂(1)
)

hT
(

X̂(2)
)

· · · hT
(

X̂(nt)
) ]T

,

(71)Ŷi =
[

ŷi(1) ŷi(2) · · · ŷi(nt)
]T

,

ym+i , which refers to the estimated fault magnitude of the 
i th actuator, is assigned to f2 , (i.e., f2 = ym+i).

Experimental example
Experimental setup and conditions
In this section, we perform the verification experiments 
of the proposed AFD system and the fault-tolerant adap-
tive control system. The main purpose of this experiment 
is to confirm the applicability of the proposed method in 
an actual plant. The experimental equipment is shown 
in Fig.  12. Using the experimental equipment shown in 
Fig.  12, we confirm the effectiveness and applicability of 
the proposed fault- tolerant adaptive control system and 
AFD system. Table 1 lists the specifications of the experi-
mental plant. In this plant, one rotary shaft is driven by 
two actuators with a timing belt. Each actuator consists of 
a DC motor and a motor driver, and it generates a torque in 
response to individual command voltages.

The experimental mechanical plant can be modeled as 
the following two-input first-order system.

where bp1, bp2 > 0 . We provide the stable reference 
model as:

And the constant vector L in (11) is,

We chose the following periodic signal as the test signal 
for AFD.

Equation (54) implies the adaptation of the parameter 
Φ proceeds by the tracking error which includes a test 
signal response of the plant. Thus, if a prior information 
about approximate dynamic characteristics of the plant is 
available, a test signal with a frequency that is hard to be 
decayed in the plant should be selected. A relatively low 
frequency signal was chosen for this experimental test 
signal due to the low-pass characteristics of the experi-
mental plant. In addition, the test signal consists of sine 
waves with different periods and has a certain magnitude, 
for the speed of adaptation. Each adaptive parameter 
has the following initial value, and the adaptive gain is as 
follows:

(72)ẋp(t) = apx(t)+ bTp u(t),

bp =
[

bp1 bp2
]T

, u =
[

u1 u2
]T

(73)ẋm(t) = −0.4xm(t)+ 10r(t),

r(t) = 1, ∀t ≥ 0.

(74)L =
[

1 2
]T

.

(75)τ (t) = 0.05(sin (0.8π t)+ sin (1.5π t))

Fig. 12  Experimental plant setup

Table 1  Specifications of experimental plant

Component Element Specification

First actuator (Act. 1) Motor Maxon DC motor RE40

Amplifier Maxon ESCON50/5

Second actuator (Act. 2) Motor Maxon DC motor RE25

Amplifier Maxon ESCON50/5

Sensor Encoder MUTOH UN-1000
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(Initial parameters)

(Adaptive gains)

In the experiment, we implemented the actuator fault 
using the following equation.

where the fault parameters �1, �2 and signal ū are cal-
culated using (5) or (6). The design parameters of ELM 
learning in the FD system are as follows.

(76)
θ1(0) = 0.01, θ2(0) = 0.5, ξ(0) = 0,Φ(0) = φ1(0) = 0.

(77)
Γθ = γθ(1) = 1.0× 10

−5
, γθ = 5.0× 10

−5
,

γξ = 5.0× 10
−5

, ΓΦ = γφ(1) = 10

(78)u(t) = Λuc(t)+ ū(t), Λ = diag{�1, �2}

Fig. 13  Linear transformation of vector b̄p with weighting matrix W 
for correction of the feature value R1

Fig. 14  Experimental result in the case where the second actuator has a partial LOE ( �2 = 0.4 ) after 150 [second]
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Preliminary experiment
In the experimental plant, there is only one way of mak-
ing a pair of redundant actuators. Therefore, the feature 

(79)Z = 46,C = 236.
value that is introduced in (64) corresponds to a scalar 
R1 . When the actuators have no fault,R1 has an unknown 
value in 0 < R1 < 1 , from the discussion in “Feature 
value for ratio of control effectiveness” section. As the 
fault magnitude of the first actuator becomes large, 
R1 decreases toward 0 . On the other hand, as the fault 

Fig. 15  Feature values and FD results in the case where the second actuator has a partial LOE ( �2 = 0.4 ) after 3000 [step]
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magnitude of the second actuator becomes large, R1 
increases toward 1. Therefore, it can be seen that adjust-
ing the R1 such that R1 = 0.5 is satisfied in the fault-free 
case has an advantage for fault diagnosis. For such an 
advantage, we give a weighting matrix W  to the test sig-
nal allocator.

From (72) and (78), the control effort Eτ that the test 
signal generates in the plant can be represented as:

where we used Λ = I because we now consider the fault-
free case. Equation  (81) shows that the ratio wbp2

/

bp1 
of elements in the vector bp can be adjusted by manipu-
lating the weighting constant w . Applying the weight-
ing matrix W  to the test signal allocator corresponds to 
transforming the vector bp with positive definite diagonal 
matrix W  . As a result, we note that the discussion about 
the MRAC system in Sect. 4 does not lose its generality.

We performed the preliminary experiments to deter-
mine the weight parameter w . We began the prelimi-
nary experiment with a weight parameter w = 1 , and 

(80)
uc = L

{

θT1 x + θ2r + ξ

}

+Wατ , W = diag{1,w}, w > 0

(81)
Eτ = bTp ΛWατ

=
[

bp1 wbp2
]

ατ

other experimental conditions are as shown in “Experi-
mental setup and conditions” section. By performing 
the preliminary experiment, we obtained a desirable 
control result. We also determined that φs = −7.39[rad] 
is the experimental convergence value of the adaptive 
parameter φ from the fault-free preliminary experi-
ment. Figure 13 shows the adaptive allocator α(φ) with 
φ = φs . The plant vector bp can be expressed as fol-
lows based on the assumption that the vector α(φs) is 
orthogonal to the vector bp.

where we assume that each element of the vector bp 
is positive. From this result, we determine the weight 
parameter as w = − cosφs

/

sin φs = 1.998 for the main 
experiment.

Main experimental result
Because of space limitations, we present only a part 
of the experimental results here. Figure  14 shows an 
experimental result. In this case, the second actuator 
has a partial LOE fault with magnitude �2 = 0.4 at 150
(s) from the start of the experiment. In the Fig. 14, the 
upper plot shows the plant output and reference model 
output, while the middle and lower plots show the first 
input uc1 and second input uc2 of the plant, respectively. 
With respect to the period before 150(s), we see that the 
plant output converges to the model output. Then, the 
plant inputs uc1,uc2 are consistently vibrated even after 
the plant output converges to the model output. At 150
(s), the second actuator has a partial LOE fault. We 
confirmed that the reference model tracking is main-
tained after the fault occurs.

(82)

bp =
[

bp1 bp2
]T

= bp
[

− sin φs cosφs
]T

= bp
[

0.8942 0.4475
]T

Table 2  FD accuracy rate (about f1)

Actual condition

Fault-free 
(%)

Act. 1 fault 
(%)

Act. 2 fault 
(%)

FD result f1
 0 (fault-free) 95.03 4.05 8.87

 1 (Act. 1 fault) 4.94 95.76 0.00

 2 (Act. 2 fault) 0.03 0.18 91.13

Table 3  Number of  samples of  experimental data that  were used to  learn ELM, and  to  calculate the  accuracy rate 
of the FD results obtained from the constructed FD system

Location Fault magnitude �

1 (fault-free) 0.7 0.6 0.5 0.4 0 (stuck) Sum

Learning

  Act. 1 24,000 2000 2000 2000 – 2000 40,000

  Act. 2 2000 2000 2000 – 2000

Verification

  Act. 1 18,000 – 2000 – 2000 2000 30,000

  Act. 2 – 2000 – 2000 2000



Page 16 of 17Kawaguchi et al. Robomech J            (2020) 7:28 

Figure 15 shows the AFD result in the experiment of 
Fig. 14. Figure 15a shows a discrete-time series of ele-
ments in the ELM input vector X , and (b) shows a dis-
crete-time series of the FD result. In plot (b), we can 
see that f1 is almost 0 when the actuator has no fault. 
About 200 steps after the fault occurrence, f1 is 2, and 
then f2 gradually tends to 0.4.

An accuracy rate of f1 , which indicates the fault 
detection and isolation result, is summarized in Table 2. 
The content of the table was obtained from six experi-
ments in total, and it includes the result of Fig. 15. The 
number of samples of each experimental dataset which 
was used to plot Table 2 and to learn ELM is presented 
in Table 3. Table 3 shows the number of datasets used 
for training and verification for each fault condition. 
From this table, it can be seen the data corresponding 
to the condition in Fig.  15 ( � = 0.4 ) does not exist in 
the learning data. Nevertheless, the fault diagnosis has 
been achieved as shown in Fig. 15b. This also shows the 
high generalization performance of the proposed FD 
system using ELM. From Table 2 and Fig. 15, we con-
firmed that the proposed FD system can estimate the 
fault occurrence and its location with high accuracy.

We performed an experiment on a simple two-input 
machine-based plant to verify the proposed method 
in this section. In recent years, systems with redun-
dant actuators, such as those seen in drones and elec-
tric/hybrid-electric vehicles [32], have attracted much 
attention. The proposed FD method and the fault-toler-
ant control design also have the potential to be applied 
to such the input redundant systems.

Conclusion
Here, we summarize the main contributions of this 
paper.

1.	 The new approach to the AFD for the input redun-
dant plant which utilizes the adaptive test signal allo-
cator in the control system [29] was proposed.

2.	 The fault-tolerant adaptive control system which 
includes the proposed adaptive allocator was 
designed by using the MRAC technique.

3.	 We introduced the feature value which indirectly 
indicates individual effectiveness of redundant actua-
tors from the adaptive parameter of the proposed 
adaptive allocator.

4.	 An FD system that detects the fault occurrence and 
estimates its location and magnitude from the intro-
duced feature value was constructed.

5.	 The applicability and the fault-tolerance of the 
designed FD system and fault- tolerant adaptive con-
trol system [29] was confirmed through the experi-

ments with a two-input redundant meachine-based 
plant.

6.	 In the experiments, the constructed FD system 
detected the fault occurrence and estimated its loca-
tion with the accuracy rate of more than 91%.
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