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Abstract 

This paper proposes a stiff and safe task-space position and attitude control scheme for robotic manipulators. This 
study extends the work of Kikuuwe et al’s. (2006) velocity-bounding proxy-based sliding mode control by explicitly 
addressing the attitude part. The proposed controller has a Jacobian-based structure, which realizes smooth trajecto-
ries when the desired attitude is far rotated from the actual attitude. It also imposes arbitrary magnitude limits on the 
end-effector velocity, angular velocity, and each actuator force without sacrificing a stiffness, which is the same level 
as a high-gain PID position control below the limits. The benefit of the proposed controller becomes apparent after 
the robot yields to external forces due to force saturations, when the robot makes contact with obstacles. In such a 
situation, if the external forces disappear, the controller generates overdamped resuming motion from large track-
ing errors. The proposed controller can be expected to enhance the safety of robotic applications for the human–
robot interaction. The proposed method is validated by experiments employing a six-degree of freedom industrial 
manipulator.
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Introduction
When the robotic manipulators work in three dimen-
sional task space, the robot’s trajectory is usually 
described by task-space coordinate vectors that contain a 
position vector and attitude of the robot end-effector. The 
control of the robot end-effector is usually performed by 
torque commands to each actuator. In order to determine 
the actuator torque command, one method is to use the 
inverse kinematics and the joint angle controllers and 
another one is to use the transpose Jacobian and the for-
ward kinematics [1]. A weak point of the control schemes 
using the inverse kinematics is that it can produce exces-
sive large torques in the the vicinity of singular configu-
rations. In such situation, a control scheme based on the 
transpose Jacobian avoids the problem numerically [2].

Robotic manipulators are usually affected by nonlinear 
factors such as inertia and joint friction. To suppress such 
nonlinear factors, a stiff position controller is necessary 
for tracking accuracy. The proportional-derivative  (PD) 
and proportional-integral-derivative (PID) position con-
trol are widely used for the robotic manipulator as a stiff 
position controller [3]. It can be extended to a Jacobian-
based control scheme using the errors between the actual 
position/attitude and the desired position/attitude [4, 5], 
in which the proportional gain sets the robot stiffness.

While the position error between the desired posi-
tion and actual position of robot end-effector is simply 
computed as a vector difference, the attitude error is not 
straightforward. Some previous researchers have studied 
the PD position controller combined with a Jacobian-
based control scheme for tracking the desired position/
attitude in three-dimensional task space. One example 
is Luh et al.’s [6] controller. Their control scheme can be 
seen as a PD-type controller combined with dynamics 
compensations, in which the attitude error is represented 
by a rotation matrix. Khatib et al.’s  [7] used the attitude 
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error in a PD-type controller based on three Euler angles. 
The controllers employing Euler angles are not free from 
the representational singularity  [8]. Caccavale et  al.  [9] 
proposed a PD-type controller using the attitude error 
in terms of an unit quaternion, which has no represen-
tational singularities. This control framework has been 
also applied to force control schemes [10] as a low-level 
controller.

One drawback of the PD-type controllers is that it can 
cause undesirable trajectories when a desired attitude is 
far rotated from an actual attitude. It may lead to a trou-
ble with the robot configuration. Moreover, the controller 
with high gains produces excessively high speed from the 
large position and attitude errors. Such behaviors usually 
result in large oscillations and overshoots, which are not 
suitable for the robot that performs tasks with humans in 
the same workspace.

For improving the safety of the stiff position control-
ler, Kikuuwe and his colleagues proposed a proxy-based 
sliding mode control (PSMC) [11–13], which is an exten-
sion of PID position controller and also can be seen as 
an approximation of a sliding mode controller  (SMC). 
The advantage of PSMC is that it produces overdamped 
motion from large position error after the actuator force 
saturation, but its tracking accuracy is the same level as a 
high-gain PID control as long as the actuator force is not 
saturated. It has been applied to many applications, such 
as rehabilitation robots  [14–16], passive actuators  [17], 
pneumatic actuators [18], motion platforms [19–21] and 
bilateral master-slave system [22]. After initial disclosure 
of PSMC, they proposed a velocity bounding PSMC (VB-
PSMC) for complementing the original PSMC  [23]. It 
imposes an arbitrary magnitude limit on velocity without 
sacrificing tracking accuracy below the limit. An exten-
sion of VB-PSMC into the three-dimensional task space 
has not been considered in the previous work where an 
attitude control is not trivial especially.

This paper proposes a stiff and safe task-space control-
ler for robotic manipulators, which is an extension of VB-
PSMC with addressing the attitude part using the unit 
quaternion. The proposed controller has a Jacobian-based 
structure, which does not produce excessively large speed 
in the vicinity of singular configurations. It imposes arbi-
trary magnitude limits on the end-effector velocity, angular 
velocity and each actuator force without sacrificing its stiff-
ness, which is the same level as a high-gain PID position 
control below the limits. The additional benefit of the con-
troller appears after the robot yields to external forces due 
to the actuator force saturation, when the robot makes con-
tact with obstacles. In such situation, if the external forces 
disappear, the controller generates overdamped resuming 
motion from the large tracking errors. This behavior looks 
similar to the compliant behavior that is realized by an 

impedance control for the robotic manipulators  [24–26], 
but its tracking accuracy is the same level as the high-gain 
PID position control during normal operation. The pro-
posed controller can be expected to be useful in a robotic 
application, when the robot works in the workspace shared 
with the human.

The rest of this paper is organized as follows. “Back-
ground” section  prepares mathematical preliminaries and 
an overview about VB-PSMC. “Robot kinematics” section 
discusses robot kinematics and a Jacobian-based struc-
ture. “Task-space controller” section presents a new task-
space controller and its implementation by implicit Euler 
discretization, which avoids chattering problem that is the 
inherent problem of SMC. “Experiment” section presents 
experimental results. “Conclusion” section  provides the 
concluding remarks.

Background
Mathematical preliminaries
In this paper, R denotes the set of all real numbers and Dn 
denotes the set of all n× n diagonal matrices of which diag-
onal elements are all strictly positive. Symbols in boldfaces 
denote a vector or a matrix and the symbol o and I denote 
the zero vector and identity matricx of appropriate dimen-
sions, respectively.

Let us define scalar functions sgn(·) and sat(·) as follows: 

where z ∈ R . These functions are illustrated in Fig. 1 and 
they are related to each other as follows:

which is proved by Kikuuwe et  al.’s  [12]. By using the 
functions sgn(·) and sgn(·) , we define Sgn(·) and Sat(·) , 
which are the element-wise vector versions of sgn(·) and 
sat(·) as follows: 

(1a)sgn(z)
�
=

{

z/|z|, if z �= 0
[−1, 1], if z = 0

(1b)sat(z)
�
=

z

max(1, |z|)
.

(2)y ∈ sgn(z− y) ⇐⇒ y = sat(z) ∀y, z ∈ R,

Fig. 1  Functions defined in (1)
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where z = [z1, z2, . . . , zn]
T ∈ R

n . Because the function 
sgn(·) is a set-valued function, the function Sgn(·) is a set-
valued vector function. Based on the relation  (2), Sgn(·) 
and Sat(·) also have a relationship as follows:

which can be used in the following relation:

where {Y ,Z} ∈ Dn and {y, z} ∈ R
n . Since Sgn(Yz) is 

equivalent to Sgn(z) , this relation holds true. It will be 
used in the derivation in “Task-space controller” section.

Velocity bounding proxy‑based sliding mode control
The concept of VB-PSMC was developed from PSMC, 
Both PSMC and VB-PSMC can be explained by an imagi-
nary dynamical system that includes a massless virtual 
object (proxy) illustrated in Fig.  2. In this system, the 
proxy is connected to a controlled object through a PID-
type virtual coupling (PID controller) and the other side 
is connected to the given desired position through a slid-
ing mode-like set-valued controller. Based on the imagi-
nary dynamical system in Fig. 2, the control algorithm of 
VB-PSMC can be derived from the analytical solution of 
a differential algebraic inclusion.

Let ps ∈ R and pd ∈ R denote the actual position and 
the desired position of the controlled object, respectively. 
px ∈ R denotes the proxy’s position. Then, the PID-type 

(3a)Sgn(z)
�
=[ sgn(z1) . . . sgn(zn) ]

T ∈ R
n

(3b)Sat(z)
�
=[ sat(z1) . . . sat(zn) ]

T ∈ R
n

(4)y ∈ Sgn(z − y) ⇐⇒ y = Sat(z) ∀y, z ∈ R
n,

(5)y ∈ Z Sgn(Y (z − y)) ⇐⇒ y = Z Sat
(

Z−1z
)

virtual coupling produces the force fPID ∈ R , which can be 
determined as follows:

where

and L, K, and B are positive real numbers, which rep-
resent the integral, proportional, and derivative gains, 
respectively. These parameters should be chosen so 
that ps is controlled to follow px . On the other side of 
the proxy, there is a difference between PSMC and VB-
PSMC. The original PSMC involves a force fSMC ∈ R 
produced by a sliding mode-like set-valued control-
ler, which is a slmple version of sliding mode control-
ler  (SMC) presented in Slotine et  al.’s work   [27]. The 
force fSMC ∈ R can be determined as follows: 

where F and H are positive real numbers for control 
parameters. The set σx = 0 is a sliding manifold in the 
proxy’s state space {px, ṗx} and the control law (8) attracts 
the proxy’s states toward the sliding manifold.

One potential risk of the control law (8) in the PSMC is 
that it can produce large velocity before the proxy’s states 
reach to the sliding manifold. In order to complement the 
drawback, VB-PSMC involves the following controller: 

(6)fPID = La+ Kȧ+ Bä

(7)a
�
=

∫

(px − ps)dt

(8a)σx = pd − px +H(ṗd − ṗx)

(8b)fSMC ∈ Fsgn(σx)

(9a)σx = pd − px +H(ṗd − ṗx)

(9b)sx =V sat((Aσ + ṗx)/V )− ṗx

Fig. 2  Physical interpretation of PSMC and VB-PSMC
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where V and A are positive real numbers. The control 
law (9) can be seen as a set-point controller that employs a 
sliding manifold as sx = 0 . It implies that ṗx is equal to or 
smaller than the parameter V because the right-hand side 
of (9b, c) is always smaller than V. Therefore, a magnitude 
of ṗx is bounded in the parameter V as long as sx stays on 
the sliding manifold. As a result, when the set-point con-
troller satisfies |ṗx| ≤ V  , it is equivalent to SMC.

The imaginary dynamical system shown in Fig. 2 satisfies 
mp̈x = fSMC − fPIDwhere m is the mass of the proxy. By 
setting m = 0 , (6) and (9) can be written in the following 
equation: 

which is a continuous-time representation of the one-
dimensional VB-PSMC. As has been detailed in Kikuuwe 
et al.’s work [23], taking the implicit Euler discretization of 
the continuous-time expression  (10) and the application 
of (5) result in the following discrete-time representation: 

where k is the integer representing a dis-
crete-time index, T is the timestep size and 
▽ denotes the backward-difference operator, 
which is defined as ▽z(k) = z(k)− z(k − 1) and 
▽
2z(k) = z(k)− 2z(k − 1)+ z(k − 2).

(9c)fSMC ∈ Fsgn(sx)

(10a)σx = pd − ps +H(ṗd − ṗs)− ȧ−Hä

(10b)sx = V sat((Aσx + ṗs + ä)/V )− ṗs − ä

(10c)0 ∈ La+ Kȧ+ Bä+ Fsgn(sx)

(10d)f = La+ Kȧ+ Bä,

(11a)

u∗(k) =
pd(k)− ps(k)+H(▽pd(k)− ▽ps(k))/T

T +H

−
▽a(k − 1)/T

T +H
+

▽ps(k)

T

(11b)u(k) =V sat

(

u∗(k)

V

)

−
▽ps(k)

T

(11c)
f ∗(k) = La(k − 1)+ (LT + K )▽a(k − 1)/T

+ (LT 2 + KT + B)u(k)

(11d)f (k) = Fsat

(

f∗(k)

F

)

(11e)

a(k) =
(2B+ KT )a(k − 1)− Ba(k − 2)+ T 2f (k)

LT 2 + KT + B

Robot kinematics
This section presents a task-space coordinate using an 
unit quaternion and a Jacobian-based structure based on a 
transpose Jacobian matrix. The structure will be combined 
with a proposed controller to produce smooth trajectories 
when the desired attitdue is far rotated from the actual 
atttidue.

Task‑space coordinate
The kinematics of robotic manipulators is the rela-
tion among joint variables qs ∈ R

6 , a position vector 
ps = [px, py, pz]

T ∈ R
3 and attitude. While the end-effec-

tor position is easily obtained by the position vector, sev-
eral representations exist to represent the attituade.

Let us consider an unit quaternion, which is composed 
of four elements for describing the attitude without a 
representational singularity resulted in an Euler angle 
representation. The unit quaternion representation of the 
attitude can be expressed as follows: 

where ηs ∈ R denotes the scalar part, α̃s = [αx,αy,αz]
T 

∈ R
3 denotes the vector part, in which θs is a rotation 

angle around the unit vector of axis µs ∈ R
3 . Note that 

the scalar part and vector part are constrained by the fol-
lowing equation:

which implies that both [ηs, α̃T
s ]

T and [−ηs,−α̃
T
s ]

T 
describe the same attitude. If the rotation angle is 
set to the range {−180◦ ≤ θs ≤ 180◦} , then the sca-
lar part is always positive and its representation of the 
attitude is unique. Based on the unit quaternion, the 
task-space coordinate can be expressed as the actual 
vector Ps = [pTs , α̃

T
s ]

T ∈ R
6 and the desired vector 

Pd = [pTd , α̃
T
d ]

T ∈ R
6where pd ∈ R

3 denotes the desired 
position vector and α̃d ∈ R

3 denotes the vector part of 
the unit quaternion representing the desried attitude 
αd = [ηd , α̃

T
d ]

T ∈ R
4.

While the end-effector position error is simply com-
puted as the vector difference pe = ps − pd , the atti-
tude error is not straightforward. The unit quaternion 
representation of the attitude error can be expressed as 
follows:

where the symbol ◦ denotes the quaternion product and 
αd is the conjugate of the quaternion representing the 
desired attitude. It can be written as follows: 

(12a)αs = [ηs, α̃
T
s ]

T

(12b)=
[

cos
(θs

2

)

, sin
(θs

2

)

µT
s

]T

(13)η2s + α̃
T
s α̃s = 1,

(14)αe = αs ◦ αd
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where θe denotes the rotation angle between the desired 
attitude and actual attitude and µe ∈ R

3 denotes the unit 
vector of axis for θe . If α̃e goes to zero, the quatanion (15) 
goes closer to the identity quaternion [1, 0, 0, 0]T . Thus, 
the position and attitude errors are represented by the 
following vector: 

 which is referred to as an error vector  Pe ∈ R
6where 

α̃e ∈ R
3 denotes the attitude error, �(·) denotes the kin-

ematics function for formulating the error vector with 
respect to the desired vector Pd and the joint variables qs.

Jacobian‑based structure
By using the kinematics function �(·) , the relation between 
the error vector Pe and joint variables can be written as 
follows:

where J (Pd , qs) ∈ R
6×6 denotes the Jacobian matrix 

defined as follows:

In the use of the relation  (17), the force relationship 
between task-space and joint space can be written in the 
following equation: 

where δW  denotes the virtual work and f c ∈ R
6 denotes 

a force vector and τ c ∈ R
6 denotes actuator force. The 

force vector and the actuator forces should be statically 
equated with each other.

Based on the relationship  (19), a Jacobian-based struc-
ture can be written as follows:

where f c is determined by the proposed controller 
using the error vector Pe as the input of the control-
ler, which will be discussed in “Task-space controller” 
section specifically.

(15a)αe = [ηe, α̃
T
e ]

T

(15b)=
[

cos
(θe

2

)

, sin
(θe

2

)

µT
e

]T

(16a)Pe = �(Pd , qs)

(16b)= [pTe , α̃
T
e ]

T ,

(17)Ṗe = J (Pd , qs)q̇s

(18)J (Pd , qs) =
∂ �(Pd , qs)

∂qs
.

(19a)δW = (δqs)
Tτ c − (δPe)

T f c

(19b)= 0

(20)τ c = J (Pd , qs)
T f c

Task‑space controller
This paper considers a torque-commanded manipulator 
having six-degrees-of-freedom, which can be described 
in the following form:

where M(qs) ∈ R
6×6 denotes a symmetric positive-def-

inite matrix that represents the inertia, τ g ∈ R
6 denotes 

gravity compensation torques, τ c ∈ R
6 represents actua-

tor force generated from the output of the controller, 
h ∈ R

6 denotes forces applied to the object from external 
forces and d ∈ R

6 denotes the sum of forces resulted from 
all unmodeled factors. In order to suppress the influence 
of h and d , the high-gain PID position/attitude controller 
is necessary mentioned in “Introduction” section.

In the use of the torque-commanded manipulator, one 
problem of the high-gain PID position/attitude control-
ler is that it produces excessively high speed and overshoot 
when the desired position/attitude are far separated from 
the actual position/attitude. The cascade control scheme is 
widely used in the industrial robot  [28, 29]. Simple torque 
and velocity limiters in the cascade control scheme does 
not provide direct solutions of the problem. This is because 
the cascade controller is joint based controller, of which the 
magnitude limits on the velocity/angular velocity cannot be 
achieved in task space directly. In addition, it does not guar-
antee overdamped and smooth motion below the limits.

Another imaginable solution to produce a damped 
response is to use a very high velocity feedback gain. It 
can magnify the noise in the velocity measurements and 
the magnified noise will deteriorate the tracking accuracy 
of the controller during normal operation.

Extension of VB‑PSMC
For this reason, let us consider an extension of VB-PSMC 
into the three-dimensional task space. We consider the 
following controller as a direct extension of (10): 

where

(21)M(qs)q̈s = τ c + τ g + h+ d

(22a)Pe = �(Pd , qs)

(22b)σ c = −Pe −H Ṗe − ȧ −H ä

(22c)sc = V Sat(V−1(Aσ c + Ṗe + ä))− Ṗe − ä

(22d)o ∈ La + Kȧ + Bä − F Sgn(sc)

(22e)f c = La + Kȧ + Bä

(23)a
�
=

∫

(Px − Pe)dt,
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Px ∈ R
6 denotes a proxy’s vector, {K ,L,B} ∈ D6 denote 

control gain matrices, {V ,F } ∈ D6 , and A and H are posi-
tive real numbers, respectively.

This is the continuous-time representation of an exten-
sion of VB-PSMC into the three-dimensional task space, 
in which f c is a force vector that should be statically 
equivalent to actuator forces. Note that (22) is an alge-
braic inclusion including discontinuity, which should be 
solved in the implementation.

Discrete‑time implementation
For the implementation of the proposed algorithm, the 
continuous-time representation (22) must be approxi-
mated by a discrete-time representation with preserving 
its feature. Based on the implicit Euler discretization, the 
discrete-time representation of (22) can be rewritten as 
follows: 

 Here, one can see that a(k) in (24b) and (24c) 
are an unknown vector. By setting the parameter 
A = 1/(T +H) , (24c) is written as follows: 

(24a)Pe(k) = �(Pd , qs(k))

(24b)
σ c(k) = −Pe(k)−

H▽Pe(k)

T
−

▽a(k)

T

−
H▽

2a(k)

T 2

(24c)

sc(k) = V Sat

(

V−1

(

Aσ c(k)+
▽Pe(k)

T
+

▽
2a(k)

T2

))

−
▽Pe(k)

T
−

▽
2a(k)

T 2

(24d)o ∈ La(k)+
K▽a(k)

T
+

B▽2a(k)

T 2

− F Sgn(sc(k))

(24e)f c(k) = La(k)+
K▽a(k)

T
+

B▽2a(k)

T 2

(25a)u∗(k) =
−Pe(k)−H▽Pe(k)− ▽a(k − 1)/T

T +H

(25b)
u(k) = V Sat

(

V−1

(

u∗(k)+
▽Pe(k)

T

))

−
▽Pe(k)

T

 Note that (24d) is an algebraic inclusion with respect to 
the unknown a(k) . In order to solve the algebraic inclu-
sion, we now express (24e) as follows: 

 Substituting (26b) into (24d) yields:

and substituting (26a) into (27) obtains as follows:

where

Based on (5), (28) can be expressed as follows:

of which the discontinuities are eliminated by using the 
application of (5) and f c(k) is a force vector that should 
be applied to the robot end-effector.

Force limiter
For situations where actuator forces should be limited 
before the force vector is saturated in F  , f ∗α(k) is used as 
a force vector, which can be bounded by using a trans-
posed Jacobian matrix (18) as follows: 

(25c)sc(k) = u(k)−
▽
2a(k)

T 2
.

(26a)

▽a(k) = (LT 2 + KT + B)−1((B▽a(k − 1))

− LT 2a(k − 1)+ T
2f c(k))

(26b)

a(k) = (LT 2 + KT + B)−1((2B + KT )a(k − 1)

− Ba(k − 2)+ T
2f c(k)).

(27)

o ∈ f c(k)

− F Sgn

(

u(k)−
▽a(k)− ▽a(k − 1)

T2

)

,

(28)

f c(k) ∈ F Sgn((LT2 + KT+ B)−1

(f ∗α(k)− f c(k)))

(29)

f ∗α(k) = La(k − 1)+ (LT + K )▽a(k − 1)/T

+ (LT 2 + KT + B)u(k).

(30)f c(k) = F Sat(F−1f ∗α(k)),

(31a)τ ∗c (k) = J (Pd , qs(k))
T f ∗α(k)

(31b)ζ(k) = ξ(C , τ ∗c (k))

(31c)τ c(k) = ζ(k)τ ∗c (k)

(31d)f α(k) = ζ(k)f ∗α(k),
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where ζ(k) ∈ R denotes a scaling factor and

in which C ∈ D6 denotes a matrix for the magnitude lim-
its on actuator forces, Cn and τ ∗cn(k) (n ∈ {1, 2, . . . , 6}) 
denote the n-th diagonal elements of C and n-th elements 
of τ ∗c (k) , respectively. It realizes the statical equivalence 
of the pairs {τ ∗c (k), f

∗
α(k)} and {τ c(k), f α(k)} . By using 

the scaling factor, the force vector f c(k) can be written 
as follows:

which is saturated when τ c(k) is saturated in C . It results 
that the magnitue of f ∗α(k) is decreased by reducing the 
magnitue of a(k) according to (26b). This is especially 
useful to improve safety when the robot yields to exter-
nal forces by the actuator force saturations. In addition, 

(32)
ξ(C , τ ∗c (k))

= min

(

1,
C1

|τ ∗c1(k)|
,

C2

|τ ∗c2(k)|
, . . . ,

Cn

|τ ∗cn(k)|

)

,

(33)f c(k) = F Sat(F−1f α(k)),

f c(k) is also limited by F  itself when actuator forces are 
not saturated in C from the large tracking errors.

Discrete‑time control algorithm
In conclusion, based on (24a), (25a), (25b), (26b), (29), 
(31) and (33), the numerical solution of  (24) is obtained 
as follows: 

(34a)Pe(k) = �(Pd , qs(k))

(34b)u∗(k) =
−Pe(k)−H▽Pe(k)− ▽a(k − 1)/T

T +H

(34c)
u(k) = V Sat

(

V−1

(

u∗(k)+
▽Pe(k)

T

))

−
▽Pe(k)

T

(34d)
f ∗α(k) = La(k − 1)+ (LT + K )▽a(k − 1)/T

+ (LT 2 + KT + B)u(k)

(34e)τ ∗c (k) = J (Pd , qs(k))
T f ∗α(k)

(34f )ζ(k) = ξ(C , τ ∗c (k))

(34g)τ c(k) = ζ(k)τ ∗c (k)

(34h)f α(k) = ζ(k)f ∗α(k)

(34i)f c(k) = F Sat(F−1f α(k))

Fig. 3  Block diagram of the whole sysytem (21) including the 
proposed controller (34)

a b c
Fig. 4  Six degree-of-freedom manipulator used in the experiments. Situations of Experiment I. a Configuration A ( pd = [0.26,−0.01, 0.52]Tm , 
α̃d = [−0.152, 0.507,−0.07]T  ). b Configuration B ( pd = [0.31, 0.02, 0.45]Tm , α̃d = [0.455, 0.377, 0.309]T  ). c Configuration C 
( pd = [0.23,−0.06, 0.54]Tm , α̃d = [−0.653, 0.334,−0.405]T)
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where τ c(k) is the output of the controller that must be 
sent to the robot actuators. The whole sysytem is illus-
trated as the block diagram shown in Fig.  3. This is the 
discrete-time control law of an extension of VB-PSMC 
combined with the Jacobian-based structure.

Behavior of controller
When removing the velocity limit from the proposed con-
troller  (34)  (i.e., setting V → ∞I ), it can be expressed as 
follows: 

 which can be seen as the controller based on PSMC. 
In such a framework, smooth and overdamped motions 
from large tracking errors are realized by setting H to be 
appropriately large, which is mentioned in the previous 
paper  [12] in detail. Note that (34) is equivalent to  (35) 
as long as all elements of u∗(k) is smaller than their cor-
respondent diagonal elements of V .

(34j)

a(k) = (LT 2 + KT + B)−1((2B + KT )a(k − 1)

− Ba(k − 2)+ T
2f c(k))

(35a)Pe(k) = �(Pd , qs(k))

(35b)σ c(k) = −Pe(k)−H
▽Pe(k)

T

(35c)

f ∗α(k) =
B + KT + LT 2

H + T
σ c(k)

+
KH − B + LT (2H + T )

(H + T )T
a(k − 1)

−
KH − B + LTH

(H + T )T
a(k − 2)

(35d)τ ∗c (k) = J (Pd , qs(k))
T f ∗α(k)

(35e)ζ(k) = ξ(C , τ ∗c (k))

(35f )τ c(k) = ζ(k)τ ∗c (k)

(35g)f α(k) = ζ(k)f ∗α(k)

(35h)f c(k) = F Sat(F−1f α(k))

(35i)

a(k) = (LT 2 + KT + B)−1((2B + KT )a(k − 1)

− Ba(k − 2)+ T 2f c(k)),

PSMC is an extension of the conventional PID con-
trol. By setting F → ∞I and H = 0 , the controller  (35) 
behaves as follows: 

(36a)Pe(k) = �(Pd , qs(k))

(36b)a(k) = a(k − 1)− TPe(k)

(36c)f c(k) = La(k)+
K▽a(k)

T
+

B▽2a(k)

T 2

Fig. 5  Results of Experiment I. The end-effector position ps and 
attitude α̃s and each joint torque during set-point controllers under 
cN1, cN2, cN3 and cN4where DT is desired trajectories, which are 
pointed in Fig. 4
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 which can be seen as the PID-type controller with the 
torque limiter using the scaling factor. The above deriva-
tion shows that the proposed controller  (34) is advanta-
geous over the controller (36) in the choices of V  , F  and 
H, which can be set according to safety regulations.

Experiment
The proposed controller (34) was experimentally tested 
by using a 6-DOF industrial manipulator MOTOMAN-
UPJ (Yaskawa Electric Corporation), which is shown 
in Fig.  4. It was controlled through a PC running the 
ART-Linux operating system. This manipulator has six 
joints, which consist of AC servo motors integrated 
with harmonic drive gearings. In the experiment, the 
sampling interval was set to be T = 0.001s and six joints 
were used, in which each joint angles were measured by 
optical encoders attached to the actuators.

For the comparison, the following controllers were 
used:

•	 cN1: The proposed controller (34) with the follow-
ing settings: 

(36d)τ ∗c (k) = J (Pd , qs(k))
T f c(k)

(36e)ζ(k) = ξ(C , τ ∗c (k))

(36f )τ c(k) = ζ(k)τ ∗c (k),

(37a)K = diag(K1, K1, K1, K2, K2, K2)

which were chosen through trial and error. Its opti-
mal design of these parameter values are subject to 
further research.

•	 cN2: cN1 with setting matrices as follows: 

•	 cN3: cN1 with setting matrices as follows: 

(37b)L = diag(L1, L1, L1, L2, L2, L2)

(37c)B = diag(B1, B1, B1, B2, B2, B2)

(37d)V = diag(V1, V1, V1, V2, V2, V2)

(37e)F = diag(F1, F1, F1, F2, F2, F2)

(37f )C = diag(30, 35, 30, 12, 5, 3)(Nm)

(37g){K1,K2} = {30000(N/m), 12000(Nm)}

(37h){L1, L2} = {40000(N/ms), 4000(Nm/s) }

(37i){B1,B2} = {200(Ns/m), 30(Nms) }

(37j){V1,V2} = {0.08(m/s), 1( s −1)}

(37k){F1, F2} = {200(N), 30(Nm) }

(37l)H = 0.3s,

(38){V1,V2} = {0.05(m/s), 0.6( s −1)}.

Fig. 6  Situations of Experiment II. a Configuration D ( pd = [0.3, 0.01, 0.5]Tm, α̃d = [0.592, 0.449, 0.296]T  ). b Configuration E ( pd = [0.36, 0.06, 0.4]Tm

, α̃d = [0.178, 0.711, 0.088]T)
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•	 cN4: cN1 with setting matrices as follows: 

which can be seen as the controller based on 
PSMC (35).

•	 cSPID: a PID-type controller combined with the Jaco-
bian-based structure (20) and a simple torque limiter: 

where parametric matrices were set as the same as 
cN4.

Experiment I: large position and attitude errors
In order to show the effectiveness of the proposed con-
troller  (34), a comparison among cN1, cN2, cN3 and 
cN4 was performed to show their trajectories from large 
attitude error. The desired vector Pd was changed discon-
tinuously among the three configurations shown in Fig. 4. 
To be more specific, the initial vector Ps was chosen as 
configuration A in Fig. 4. The desired vector Pd was dis-
continuously changed to configuration B at t = 3s , then 
to configuration C at t = 7s , and finally, again to configu-
ration A at t = 13s.

The results show that cN1, cN2, cN3 and cN4 produce 
overdamped motion without overshoot from large posi-
tion/attitude errors shown in Fig. 5. In Period A in Fig. 5, 
one can see that the controllers produce smooth trajec-
tories from large attitude error, which is visible as errors 
in {αx,αz} . In addition, their velocity and angular velocity 
are bounded at the values specified by the matrix V  . Such 
behavior is correspond to the feature of VB-PSMC men-
tioned in “Background” section.

Experiment II: comparison between cN4 and cSPID
Second set of experiments were performed to compare 
cN4 with cSPID. The desired vector Pd was changed 
between the two configurations shown in Fig.  6. The 
results are shown in Fig. 7. At t = 2s , the robot end-effec-
tor started to accelerate due to the large tracking errors. 

(39){V1,V2} = {0.03(m/s), 0.4( s −1)}.

(40){V1,V2} = {∞(m/s) ,∞( s −1)},

(41a)Pe(k) = �(Pd , qs(k))

(41b)a(k) = a(k − 1)− TPe(k)

(41c)f c(k) = La(k)+
K▽a(k)

T
+

B▽2a(k)

T 2

(41d)τ ∗c (k) = J (Pd , qs(k))
T f c(k)

(41e)τ c(k) = C Sat(C−1τ ∗c(k))

cSPID produced high speed as expected, which leads to 
large oscillations and overshoots. The results indicate 
that cN4 and cSPID have distinctly different transient 
responses after acceleration. Specifically, the result from 
cN4 shows that the actual position/attitude exponentially 
move toward the desired position/attitude. It leads to 
smooth and overdamped motion, which can be adjusted 
by the parameter H. This property can be considered 
beneficial for safety when the desired position/attitude 
are far separated from the actual position/attitude.

Fig. 7  Results of Experiment II. The end-effector position ps and 
attitude α̃s and each joint torque during set-point controllers under 
cN4 and cSPIDwhere the desired trajectories DT are pointed in Fig. 6
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Experiment III: human–robot interaction
In the final set of experiments, the robot was moved by 
the experimenter’s hand through the robot’s link that is 
connected to the 5th joint. In the experiment, a compari-
son between cN1 and cSPID was performed to show the 
effectiveness of cN1. It was started with the initial con-
figuration F shown in Fig. 8. The experiment results are 
shown in Fig.  9. In Period B, the experimenter applied 
a torque smaller than 5  Nm to the robot’s link, which 
appears as a reaction torque generated by the 5th joint. 
In Period C, the experimenter applied a torque larger 
than 5 Nm to the robot’s link. After Period C, the experi-
menter released his hand from the robot.

Fig. 9 shows that, in Period B, the robot did not move 
to any direction while the external force is applied to the 
robot link. It can be seen that the controller cN1 and 
cSPID resist the external force under the actuator force 
limiter. In Period C, the robot yields to external force due 
to the actuator force saturation where cN1 and cSPID 
produce distinctly different motion. The result produced 
by cSPID shows that the robot does not move toward the 
direction of the external force, while the 5th joint yields 
to external force shown in Figs.  8b and 9. This motion 
leads to the undesirable robot configuration. In addi-
tion, it produces excessively high speed after Period C 
due to large tracking errors. With the controller cN1, 
in contrast, the robot moves toward the direction of the 

external force shown in Figs.  8a and 9. In this Period, 
the force vector is saturated when 5th joint torque is 
saturated, which is consistent with the point discussed in 
“Force limiter” section. It is a preferable response when 
the robot should be moved by external environments. 
After Period C, the controller cN1 produces overdamped 
resuming motion from the large tracking errors. These 
behaviors can be seen as a main advantage of the pro-
posed controller.

Conclusion
This paper has proposed a new task-space controller for 
robotic manipulators. It can be seen as an extension of 
VB-PSMC to deal with position and attitude in the three-
dimensional task space. The proposed controller has a 
Jacobian-based structure, which realizes smooth trajec-
tories when the desired attitude is far rotated from the 
actual attitude. It also imposes arbitrary magnitude lim-
its on the end-effector velocity, angular velocity and each 
actuator force without sacrificing the stiffness, which is 
the same level as a PID-type controller below the limits.

This controller was tested through experiments employ-
ing a 6-DOF industrial manipulator equipped with har-
monic drive gearings. The results show that it produces 
high tracking accuracy and safe behavior as the advantage 
inherited from VB-PSMC. In addition, the force vector is 
saturated when actuator forces are saturated by external 

Fig. 8  Situations of Experiment III. a The robot is moved by the experimenter’s hand under cN1. b The robot is moved by the experimenter’s hand 
under cSPID. Both (a, b) are with the initial configuration F, which is (pd = [0.38, 0.13, 0.44]Tm,Qαd = [−0.157, 0.515,−0.078]T)
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forces. It realizes that the robot is moved by external forces 
smoothly after actuator forces are saturated. The benefit of 
the proposed controller becomes apparent after the robot 
yields to external forces. In  situations where the external 
forces disappear after the robot yields to external forces, 
the controller generates overdamped resuming motion 
from large tracking errors.

The proposed controller can be expected to enhance the 
safety of robots that work in the workspace shared with 
humans. Future study should address better guidelines for 

the choice of the matrices {V ,F } and theoretical details on 
the Jacobian-based structure (20).
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