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Abstract 

In neurosurgery, dissection and retraction are basic techniques for approaching the site of pathology. These tech-
niques are carefully performed in order to avoid damage to nerve tissues or blood vessels. However, novice surgeons 
cannot train in such techniques using the haptic cues of existing training systems. This paper proposes a real-time 
simulation scheme for training in dissection and retraction when opening a brain fissure, which is a procedure for 
creating a working space before treating an affected area. In this procedure, spatulas are commonly used to perform 
blunt dissection and brain tissue retraction. In this study, the interaction between spatulas and soft tissues is modeled 
on the basis of a finite element method (FEM). The deformation of soft tissue is calculated according to a corotational 
FEM by considering geometrical nonlinearity and element inversion. A fracture is represented by removing tetra-
hedrons using a novel mesh modification algorithm in order to retain the manifold property of a tetrahedral mesh. 
Moreover, most parts of the FEM are implemented on a graphics processing unit (GPU). This paper focuses on parallel 
algorithms for matrix assembly and matrix rearrangement related to FEM procedures by considering a sparse-matrix 
storage format. Finally, two simulations are conducted. A blunt dissection simulation is conducted in real time (less 
than 20 ms for a time step) using a soft-tissue model having 4807 nodes and 19,600 elements. A brain retraction simu-
lation is conducted using a brain hemisphere model having 8647 nodes and 32,639 elements with force feedback 
(less than 80 ms for a time step). These results show that the proposed method is effective in simulating dissection 
and retraction for opening a brain fissure.
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Background
Virtual reality (VR) surgery simulation is a safe and effi-
cient approach to surgical training. In the last two dec-
ades, laparoscopic surgery simulators have been widely 
developed to support efficient training in surgical tech-
niques. In contrast, neurosurgery simulators have not 
been investigated extensively. However, recent years have 
witnessed some significant advancements in the devel-
opment of neurosurgery simulators [1, 2]. Neurosurgery 
requires surgeons to perform precise operations. Because 
surgeons rely on haptic cues in various contexts, the 
physics of soft-tissue deformation should be reliable not 
only for graphical rendering but also for haptic rendering.

One of the basic procedures in neurosurgery is the 
opening of a brain fissure, which is necessary to create a 
working space to access an affected area. Figure 1 shows 
a schematic of this procedure. In order to approach an 
affected area located at the bottom of the fissure, sur-
geons cut connective tissues such as the arachnoid 
membrane and arachnoid trabeculae using microscis-
sors and push the brain tissues apart to keep the tis-
sues open using spatulas  [3]. Aspirators are used to 
apply tension to the membrane and remove blood. It is 
known that the position of the spatulas and the pushing 
force are related to the patient’s prognosis  [4]. An early 
simulator focusing on retraction in neurosurgery was 
the virtual retractor developed by Koyama et  al.  [5]. It 
modeled the deformations of intracranial vessels using 
geometrical theory, but physical consistency was not 
considered. Hansen et  al. developed a real-time simula-
tor for brain retraction [6]. They adopted a finite element 

Open Access

*Correspondence:  sase@scc.ist.hokudai.ac.jp 
1 Graduate School of Information Science and Technology, Hokkaido 
University, Kita 14 Nishi 9, Kita-ku, Sapporo, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-015-0040-0&domain=pdf


Page 2 of 16Sase et al. Robomech J  (2015) 2:17 

method (FEM) for calculating the deformation of brain 
tissues and the reaction force. However, the resolution 
of the mesh was limited to less than a thousand nodes 
because of its high computational cost. Hasegawa et  al. 
conducted a cerebellar retraction simulation using a 
high-resolution model [7]. They considered the nonlinear 
viscoelastic behavior of soft tissues. However, their opti-
mization method was inadequate for realizing real-time 
simulation.

To develop a haptic simulator for opening a brain fis-
sure, the following system specifications are required.

  • The refresh rate of the physics simulation must be 
greater than 30 Hz for smooth animation [8].

  • The positions of the surgical instruments are input 
by haptic devices, and the reaction force must be 
returned immediately. Ideally, the refresh rate of 
the force feedback should be greater than 1 kHz for 
interaction with stiff materials [8].

  • The number of nodes of target finite element model 
(brain hemisphere) should be approximately 10,000.

  • The ability to perform connective-tissue dissection 
should be present [8].

  • The soft tissues should have physically correct 
behavior. Brain tissues are known to have complex 
mechanical properties; for example, white matter is 
known to have anisotropic visco-hyperelasticity  [9].

Generally, there is a compromise between the precision 
and the speed for the computation of soft-tissue physics. 
Therefore, we firstly simplify the mechanical properties 
of soft tissues and aim to develop a visually acceptable 
simulator with a refresh rate greater than 30 Hz for the 
physics simulation.

To fulfill the above-mentioned requirements, we 
firstly formulated the framework of the interactive 

simulation using a linear FEM and combined it with hap-
tic devices  [10]. In order to accelerate the calculation, 
we developed an algorithm for collision detection that is 
implemented on a graphics processing unit (GPU)  [11]. 
However, the computational speed is not sufficient to run 
in real-time. In particular, the FEM solver was not opti-
mized for calculation on the GPU, and it became the bot-
tleneck of the simulation.

In this paper, an efficient implementation of an FEM 
solver is proposed to simulate the opening of a brain fis-
sure. The contributions of this paper are the following:

  • A GPU-accelerated method of a corotational linear 
FEM including a boundary-condition-based collision 
response is proposed.

  • A stabilization algorithm for the fracture simulation 
based on element removal is incorporated into the 
proposed GPU-accelerated FEM framework.

In the conventional FEM implementation, the most 
time-consuming procedures are assembling the stiff-
ness matrix and solving linear equations. Moreover, the 
calculation of the collision response requires additional 
procedures. In the FEM solver proposed in this paper, the 
collision response is calculated by applying geometrical 
boundary conditions. Because conventional FEM solvers 
do not consider the frequent changes in the geometri-
cal boundary conditions, efficient matrix assembly and 
matrix rearrangement have not attracted much attention. 
In this paper, the three above-mentioned procedures, i.e., 
assembling the stiffness matrix, solving linear equations, 
and rearranging the stiffness matrix, are implemented by 
considering a sparse-matrix storage format (“Implemen-
tation and GPU parallelization”). All of these algorithms 
are implemented on a GPU. However, the proposed algo-
rithms assume that the mesh topology of analysis area 

a b c
Fig. 1 Schematic of the opening of a Sylvian fissure. a Sylvian fissure, b cross-sectional view of X-X′, and c retraction and dissection using spatulas, 
scissors, and an aspirator
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is constant during a simulation. Therefore, additions 
of new nodes and changes in the node connectivity are 
not permitted. In order to realize the ability to dissect 
under these limitations, we adopt a fracture represen-
tation on the basis of the element removal approach. In 
this approach, fracture behaviors are calculated by inac-
tivating the physical contributions of removed elements. 
However, it has been reported that the dynamic behaviors 
become unstable, which may lead to diverse the numeri-
cal calculation when the tetrahedral mesh becomes non-
manifold because of element removals [12]. To solve the 
stability problem, we also propose an element removal 
algorithm to avoid topological singularities (“Modeling of 
dissection”). The concept of proposed algorithm is active 
element removal. Its implementation is considerably sim-
pler and can be used as alternative to existing methods 
such as that in [13]. Finally, to evaluate the performance 
of these implementations, a blunt dissection and brain 
retraction are simulated, and the results of these simula-
tions are presented (“Results”).

Related work
Collision response
Recent cutting-edge studies on real-time haptic render-
ing for interacting deformable objects have focused on 
efficient contact handling including collisions between 
multiple deformable objects and self-collisions  [14, 15]. 
They modeled contacts based on Signorini’s law and Cou-
lomb’s law, and the linear or nonlinear complementarity 
problem needs to be solved. Although their algorithms 
are highly optimized for a GPU, the number of nodes is 
limited to several thousand for realizing real-time simu-
lation because of their high computational costs.

The fastest implementation of collision response is the 
penalty method [16]. In this method, external forces are 
applied to contact nodes according to the penetration 
depth. To compute the magnitude of the external forces, 
scalar coefficients are required for multiplication with the 
depth. However, it is difficult to determine the scalar val-
ues for obtaining a stable response.

The other approach is the position constraint method. 
In this method, nodal displacements are directly input 
according to geometric relations. In an early study on a 
real-time surgery simulator, Cotin et  al. introduced a 
position constraint formulation using the Lagrange mul-
tiplier method  [17]. Hirota et  al. adopted a boundary-
condition-based constraint [18]. Although these method 
are essentially equivalent and both methods resulting 
in a large simultaneous linear equations, the method of 
Hirota et al. has the advantage in the term of the size of 
the linear equations (see “Collision response of soft tis-
sues”). The limitation of this method is that accurate con-
tact response subject to Signorini’s law or Coulomb’s law 

cannot be computed. However, because the computa-
tional cost is lower than that of the accurate methods, the 
position constraint method can be used for the analysis 
of a fine detailed mesh.

As mentioned above, the position constraint method 
based on a boundary condition involves a large number 
of simultaneous linear equations. Because the linear sys-
tem is large and sparse, the sparse matrix format should 
be adopted for efficient execution of mathematical opera-
tions and to reduce memory consumption. However, its 
GPU-optimized implementations considering the sparse 
matrix format have not been discussed.

Fracture
In the field of computer graphics, several methods of 
fracture simulation have been discussed [19–21]. This 
section describes the details of fracture algorithms devel-
oped for real-time applications.

A notable approach is the extended FEM  [22], which 
allows for representation of any crack without the limita-
tions of a mesh topology by adding a shape function to 
the element displacement field interpolations. Thus, an 
additional degree of freedom (DOF) is provided to model 
crack discontinuities.

Mor and Kanade modeled the knife cutting of soft 
objects [23]. They proposed split patterns in which a tet-
rahedron is split into smaller tetrahedrons according to 
the knife path. In this approach, the tetrahedral mesh is 
explicitly modified by adding new nodes to it.

Delingette et  al. proposed an element removal 
approach in the early years of surgery simulation stud-
ies [24]. Even though this approach suffers from the dis-
advantage of a loss of volume, it offers advantages such as 
a low computational cost and simple implementation. In 
particular, we focus on the fact that this algorithm does 
not require the addition of add new nodes. Thus, simula-
tions can be performed at the same computational cost 
throughout. Because real-time characteristics are impor-
tant for practical use of the surgery simulator, we adopt 
this element removal approach.

As shown by Forest, element removal may lead a tet-
rahedral mesh to become a nonmanifold geometry [12], 
which means that the tetrahedral mesh has vertices or 
edges where the thickness of the volumetric mesh can-
not be defined. Vertices and edges are known as singu-
lar vertices and singular edges, respectively, and such a 
singularity is known as a topological singularity (Fig. 2). 
Because the dynamic behavior can be unstable when the 
FEM mesh becomes a nonmanifold geometry, topologi-
cal singularities should be avoided during simulation. 

Some topological-singularity avoidance algorithms 
have been proposed in the literature. Forest et  al. pro-
posed a node separation algorithm [12]. They separated 



Page 4 of 16Sase et al. Robomech J  (2015) 2:17 

the singular vertices and singular edges by adding cop-
ies of such vertices and edges. However, this approach 
increases the computational cost because the DOFs of 
the system increase with the addition of nodes. Nakay-
ama et al. proposed a delay algorithm that suspends the 
removal of elements that cause topological singulari-
ties [13]. However, the delay algorithm does not correctly 
simulate actual fracture phenomena. In the actual case, 
the stress will be concentrated at a singular vertex and 
singular edge. Thus, the two elements connected by a sin-
gular vertex or singular edge will be disconnected. There-
fore, such elements should be removed immediately.

Finite element model of the brain
Corotational FEM
The corotational formulation is an approximate approach 
that considers the geometrical nonlinearity for small 
strain deformations. This formulation evaluates element 
strains with respect to the rotated element coordinates, 
which are referred to as corotational coordinates (see 
Fig.  3a). A corotational coordinate is a coordinate that 
is rotated using the rotation component of the current 
deformed configuration. A corotational FEM is a reason-
able choice for achieving a trade-off between precision 
and computational cost [25]. In general, the element stiff-
ness equation is defined as

(1)f eext = K
eue,

where f eext and ue are the nodal force and displacement 
vectors of an element, respectively. The element dis-
placement vector is defined as ue = xe − xe0, where xe 
and xe0 are the displaced and initial nodal position vec-
tors of the element, respectively. If the rotation of the 
element coordinates is represented by a rotation matrix 
R ∈ R

3×3, the displaced position and force vectors are 
transformed by R and the element stiffness equation 
becomes

where Ke
0 is the element stiffness matrix of a linear FEM 

and Re � blockdiag [R,R,R,R]. The above equation is 
rewritten as

where

f e0 is known as the force offset vector.
R is calculated by singular value decomposition (SVD) 

of deformation gradient. The details are described in 
“Appendix A: Rotation of a deformed tetrahedron”.

Matrix/vector assembly
After Ke and f e0 are obtained, the global stiffness 
matrix K ∈ R

3Nnode×3Nnode and global force offset vector 
f 0 ∈ R

3Nnode, where Nnode is the number of nodes, are 
calculated by gathering all element contributions using 
connectivity information. This procedure is known as 
matrix/vector assembly, and it is expressed as

(2)R
eTf eext = K

e
0

(

R
eTxe − xe0

)

,

(3)f eext = K
exe − f e0,

(4)K
e =R

e
K
e
0R

eT,

(5)f e0 =R
e
K
e
0x

e
0;

(6)K =
∑

e

L
eT
K
e
L
e,

(7)f 0 =
∑

e

L
eTf e0,

Fig. 2 Topological singularity

a b
Fig. 3 Deformation of a tetrahedral element. a Geometrical nonlin-
earity. b Inversion of an element
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where Le ∈ R
12×3Nnode is the gather matrix, which gath-

ers element nodal data from global vectors. Le is a 
Boolean matrix, which consists of zeros and ones. Note 
that Eqs.  (6) and (7) are just mathematical formula-
tions; the actual assembly process is implemented in a 
more efficient manner. The efficient implementations are 
described in “Efficient matrix/vector assembly in a sparse 
storage format”.

The global stiffness equation is written as

where f ext and x are the global external force vector and 
global position vector, respectively. For simplicity, this 
equation can be written by analogy to the global stiffness 
equation of a linear FEM as

where f = f ext − f 0.

Collision response of soft tissues
When a surgical instrument contacts with the brain 
model, it is assumed that the contact nodes move 
together with the instrument (Fig.  4). Hence, the dis-
placements of the contact nodes are known, but their 
contact forces are unknown. In contrast, the displace-
ments of free nodes and internal nodes are unknown, but 
their external forces are known (they are zeros). There-
fore, the nodes are rearranged into displacement-known 
nodes and force-known nodes, and Eq. (9) can be modi-
fied by rearranging the matrix and vectors as follows [18]:

where the suffixes f  and d denote the components of the 
force-known and displacement-known nodes, respec-
tively. As shown in Fig. 4, the contact nodes are geomet-
rically constrained on the surface of a rigid body (surgical 
instrument). Hence, the displacements of the contact 
nodes are known, whereas the forces are unknown. In 

(8)f ext = Kx − f 0,

(9)f = Kx,

(10)

[

f f
f d

]

=

[

Kff Kfd

Kdf Kdd

] [

xf
xd

]

,

contrast, the forces generated at unconstrained nodes 
are zero under the stationary condition, whereas the 
displacements are unknown. In Eq.  (10), f d and xf are 
unknown, and xf is obtained by solving the following lin-
ear equation:

After xf is obtained, the other unknown value f d is cal-
culated as

Although only the formulation of the static FEM is 
described above, the adoption of the formulation of the 
dynamic FEM with implicit time integration introduces 
a mathematically similar equation to the formulation of 
static FEM. The details of the formulation of the dynamic 
FEM are presented in “Appendix B: Formulation of a 
dynamic FEM”. 

Implementation and GPU parallelization
This section describes the implementation of the FEM. 
To measure the computational time, we used a CIARA 
KRONOS S810R workstation, which employs an Intel 
Core i7-3960X (six cores, overclocked to 4.5 GHz) CPU 
with 64  GB of RAM and two GPUs, an NVIDIA K20c 
(2,496 CUDA cores) for general-purpose computing 
and an NVIDIA Quadro K5000 (1536 CUDA cores) for 
graphics processing. Parallel processing is implemented 
using OpenMP for multithread computing on a multi-
core CPU and NVIDIA CUDA for general-purpose com-
puting on GPUs (GPGPU).

Simulation procedures
The flowchart of our simulation scheme is shown in 
Fig. 5. Before the real-time simulation loop, the element 
stiffness matrices of the linear elasticity Ke

0 and the reduc-
tion lists described in “Efficient matrix/vector assembly 
in a sparse storage format” are calculated. The real-time 
simulation procedures are as follows. 

(11)Kffxf = f f − Kfdxd.

(12)f d = Kdfxf + Kddxd.

Fig. 4 Contact nodes and free nodes
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Calculation of element data: Re, Ke, and f e0 are calcu-
lated. The details of these parallel implementations are 
described in “Calculation of element data”.
Matrix/vector assembly: K and f 0 are assembled. 
The details of the parallelization of the assembly are 
described in “Efficient matrix/vector assembly in a 
sparse storage format”.
Collision detection: Collision detection between a 
deformable object (brain) and rigid objects (brain 
spatulas) is executed. The contact nodes of the 
deformable object and the corresponding forced dis-
placements are determined. The discrete collision 
detection approach reported in  [11] is adopted. This 
method can deal with collisions between a nonconvex 
deformable object and a rigid object.
Application of boundary condition: On the basis of 
collision detection, a boundary condition is set. As 
mentioned in “Collision response of soft tissues”, a 
large sparse matrix is rearranged according to the 
boundary condition. The implementation details are 
described in “Matrix rearrangement”.
Calculation of the deformation and external forces: 
The calculation of the deformation is a problem involv-
ing a system of linear equations. The linear equations 
are solved by the conjugate gradient method. Sparse-
matrix dense-vector multiplications are implemented 
by the sparse-matrix library CUSPARSE provided by 
NVIDIA Corp.

Calculation of element data
An element stiffness matrix Ke is calculated using Eq. (4). 
It is assumed that the materials are isotropic; hence, Ke is 
a symmetric matrix. Therefore, it is sufficient to store the 
elements of the upper triangular matrix of Ke. Further, 

f e0 is calculated in the same way as Ke (Eq. 5). Finally, all 
K
e (K1, K2, . . . ,KNelem) and f e0 ( f

1
0, f

2
0, . . . , f

Nelem
0 ), where 

Nelem is the number of tetrahedral elements, are serial-
ized and stored in the arrays valuesKe and valuesF0e, 
respectively. These procedures are implemented in paral-
lel using one thread per element.

Efficient matrix/vector assembly in a sparse storage format
In the matrix/vector assembly procedure, the element 
stiffness matrices are assembled into the global stiffness 
matrix, as described in Eq.  (6), and the element force 
offset vectors are assembled into the global force off-
set vector, as described in Eq. (7). First, the implemen-
tation of global stiffness matrix assembly is described, 
and then, that of global force offset vector assembly is 
described.

In most FEM problems, the global stiffness matrix is a 
large sparse matrix that is stored in a sparse-matrix stor-
age format to reduce memory consumption. In this work, 
the global stiffness matrix is stored using the coordinate 
list (COO) sparse storage format during matrix assem-
bly. This is because of the requirement of matrix rear-
rangement described in “Matrix rearrangement”. The 
COO consists of three arrays: values, rowIndices, and 
columnIndices. In the COO format, only the nonzero ele-
ments of a sparse matrix are stored in the array values. 
The row and column indices of the nonzero elements 
are stored in the arrays rowIndices and columnIndices, 
respectively. These arrays are stored in row-major order. 
For example, the matrix

is stored as the following three arrays.

In the remainder of this section, values, rowIndices, and 
colmunIndices represent the arrays of K in the COO 
format.

In order to implement a fast matrix assembly algo-
rithm, we adopted the reduction list approach proposed 
in [26]. When the mesh topology does not change during 
simulation, rowIndices and columnIndices are constant 
matrices. Hence, only values should be updated at every 
time step. Matrix assembly involves a number of inde-
pendent summations expressed as





a b 0
0 c 0
0 0 d





values = [a, b, c, d]

rowIndices = [0, 0, 1, 2]

columnIndices = [0, 1, 1, 2]

(13)values(i) =

Nsrc,i
∑

j=1

valuesKe(srcIndicesi(j)),

Fig. 5 Flowchart of the simulation scheme
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where srcIndicesi is an array that stores the source indi-
ces pointing to the components of valuesKe for the sum-
mation of the i-th component of values, and Nsrc,i is the 
number of components of srcIndicesi. The components 
of srcIndices are determined by the connectivity of a tet-
rahedral mesh. A reduction list stores the source indices 
and a negative-signed destination index as

As shown in Eq. 14, a reduction list has one destination 
index in general. On the other hand, because we assume 
that the material is isotropic and K is a symmetric matrix, 
the reduction list can store two destination indices as

where lower(i) is an index pointing to the lower compo-
nent of values(i). An example of reduction-array-based 
summation is shown in Fig.  6. For a symmetric matrix, 
there is a storage format that stores only upper or lower 
triangular entries as in the case of Ke. However, the 
adoption of such a storage format for K requires special 
treatment in the subsequent procedures, which might 
degrade the maintainability because of its complexity. 
Thus, all the nonzero components of K are stored using 
this reduction procedure. This approach avoids atomic 
operation because the output memories are independent 
of each other as in the case of the general reduction list 
approach.

The assembly of f 0 is implemented in a similar man-
ner. After the calculation of Re, all values of f e0 are stored 
as an array. The reduction list for the assembly of f 0 is 
constructed in advance. The reduction is performed in a 
thread per component of f 0, which allows for the calcu-
lation of f 0 without atomic operation. This reduction is 
independent of the assembly of K. Therefore, assemblies 
of K and f 0 are performed concurrently, e.g., on two 
GPUs.

(14)

reductionListi = [srcIndices(1), srcIndices(2), . . . ,

srcIndices(Nsrc,i),−i].

(15)
reductionListi = [srcIndices(1), srcIndices(2), . . . ,

srcIndices(Nsrc,i),−i,−lower(i)],

Matrix rearrangement
As described in “Collision response of soft tissues”, col-
lisions are represented by geometrical boundary con-
ditions and the global stiffness matrix is rearranged by 
considering the boundary conditions. This rearrange-
ment procedure involves permutation and separation 
processes.

Permutation is performed by referring to a permuta-
tion list that includes the source index i and destina-
tion index list(i). The list is constructed according to the 
boundary conditions. Figure 7 shows an example of per-
mutation in the case of one tetrahedron, in which nodes 
0, 2, and 3 are constrained. The permutation procedure 
accumulates the variables of the contact nodes at the 
head of the array and those of the free nodes at the bot-
tom. Permutation using a permutation list is represented 
as m′(list(i), list(j)) = m(i, j), where m and m′ represent 
the source matrix and permutated matrix, respectively, 
and m(i,  j) denotes the i,  j component of matrix m. If a 
matrix is stored as a dense matrix, permutation is per-
formed by simply copying the source components to the 
destinations. However, if the matrix is stored in a sparse 
storage format, the implementation of permutation dif-
fers according to the storage format.

In this work, the global stiffness matrix is stored in the 
COO format, as mentioned in “Efficient matrix/vector 
assembly in a sparse storage format”. In the COO format, 
permutation is easily and efficiently performed as

These operations do not conflict with each other, and 
all permutations are performed in parallel. Other sparse 
storage formats such as compressed sparse row (CSR) are 
also widely used. The CSR format can be constructed by 
compressing rowIndices used in the COO format. This 
approach can further reduce the memory consumption 
compared to the COO format, and it is suitable for par-
allelizing matrix–vector multiplication. However, the 

(16)
rowIndices(i) = list(rowIndices(i)),

columnIndices(i) = list(columnIndices(i)).

Fig. 6 Reduction array
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implementation of permutation is not easier than that of 
the COO format. Although it can be realized using the 
permutation matrix P as M′ = P

T
MP, this implementa-

tion is not efficient because the memory traffic increases 
and additional arithmetic operations are required com-
pared to the COO format. Therefore, the COO format 
was selected as the sparse storage format in this work.

Sorting should be performed to maintain the row and 
column index arrays in ascending order; however, the 
sorting process can be combined with a separation pro-
cess. An overview of the entire procedure including per-
mutation and separation is shown in Fig.  8 by taking a 
matrix A as an example. After Eq. (16) is executed, three 
arrays are sorted by columnIndices. Next, A is separated 
along its columns into Af and Ad. When the separation 
index is Nf, entries whose column index is less than Nf 
are copied to Af. The other entries are copied to Ad. In 
order to fix columnIndices to zero-base indices, Nf is sub-
tracted from all of the components of columnIndices in 
Ad. Subsequently, three arrays, namely values, rowInd-
ices, and columnIndices of Af and Ad, are sorted by their 
rowIndices. Note that this sorting must be stable, which 
means that the original order is maintained when the 
compared values are equal to each other. This is because 
the ascending order of columnIndices might be disturbed 
if the sorting is not stable. After sorting, Af and Ad are 
separated along their rows into Aff, Adf, Afd, and Add . 
Subtraction of rowIndices of Adf and Add is performed 
for the same reason as that for Ad. Finally, the separated 
matrices are obtained in the COO format.

These procedures require sorting of large arrays, which 
is computationally expensive. In order to accelerate the 
sorting process, they are implemented on a GPU using 
the NVIDIA CUDA thrust library.

For further optimization, the permutation list and the 
arrays (values, rowIndices, columnIndices) of A can be 

compressed by considering the series order of the arrays 
of A. An example of the compression is shown in Fig.  9. 
Because three variables of each node are relocated together, 
the permutation list becomes a combination of three con-
secutive integers. Moreover, rowIndices and columnIndices 
consist of a combination of the same three integers, i.e., (0, 
0, 0), and a combination of three consecutive integers, i.e., 
(0, 1, 2), respectively. Hence, sorting is performed accord-
ing to these three-integer blocks. In order to sort per block, 
values is separated into three arrays, values_x, values_y, 
and values_z. Next, the permutation list, rowIndices, and 
columnIndices are compressed by storing only the first ele-
ment of the consecutive-integer blocks. This compression 
reduces the size of the arrays to a third of their original size 
and the computational cost of sorting decreases. After Aff,  
Afd, Adf, and Add are obtained, the compressed arrays are 
extracted in the original COO format. 

Modeling of dissection
Topological‑singularity avoidance algorithm for element 
removal
This section describes a simple and efficient topological-
singularity avoidance algorithm for element removal. The 
basic concept of the approach is active element removal. 
Although the volume decreases as elements are removed, 
the approach is fast and easy to implement. The flow of 
the algorithm is summarized as follows.

1. Fracture detection Determine the tetrahedrons to be 
removed on the basis of a specified fracture criterion 
and list them in a set Trm.

2. Singularity verification Check whether the verti-
ces and edges that belong to Trm are singular after 
removing the tetrahedrons listed in Trm.

3. Detection of additional tetrahedrons to be removed If 
any vertices or edges are predicted to be singular, the 

Fig. 7 Permutation list
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tetrahedrons that include the predicted singular ver-
tices or edges are added to Trm.

4. Repeat Singularity verification and Detection of addi-
tional tetrahedrons to be removed until Trm becomes 
empty.

The maximum principal stress is selected as the cri-
terion to determine the tetrahedrons to be removed. If 
the absolute value of the maximum principal stress of 
an element exceeds a previously specified threshold, the 
element is listed in Trm, the set of tetrahedrons to be 
removed. Hence, the removal criterion is defined as

where σi (i = 1, 2, 3) is the maximum principal stress of 
a tetrahedron, which is obtained as the eigenvalue of 
the stress tensor Se, and σmax is the previously specified 
stress threshold. Note that we use a constant strain ele-
ment; and thus, Se becomes constant on an element. In 
the corotational FEM, Se is calculated by considering the 
element rotation as Se = D

e
B
e
(

R
exe − xe0

)

, where De and 

(17)max(|σ1|, |σ2|, |σ3|) > σmax,

B
e are the strain–stress matrix and displacement–strain 

matrix, respectively.
In the singularity detection phase, the sets of vertices 

Vrm and edges Erm are constructed from the tetrahe-
drons listed in Trm. Each vertex v ∈ Vrm and edge e ∈ Erm 
is checked for a singularity. The algorithm of singularity 
detection of vertex v is summarized as follows. An exam-
ple is shown in Fig. 10a.

1. Extract Tv, a set of tetrahedrons, that includes v as a 
vertex.

2. Select an arbitrary tetrahedron tv0 ∈ Tv.
3. Construct Tv

edge, a set of tetrahedrons, that shares at 
least one edge with tv0.

4. Select a tetrahedron tvx ∈ Tv
edge and search for an 

edge-sharing tetrahedron as described above in steps 
2 and 3. Add the new edge-sharing tetrahedron to 
Tv
edge and repeat until no entry is found.

5. If n(Tv) �= n(Tv
edge), v is a singular vertex, where n(·) 

denotes the number of tetrahedrons.

Fig. 8 Algorithm and example of matrix rearrangement
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The algorithm for singular edge detection is similar to 
that for singular vertex detection, as it is summarized as 
follows. An example is shown in Fig. 10b.

1. Extract Te, a set of tetrahedrons, that include e as an 
edge.

2. Select an arbitrary tetrahedron te0 ∈ Te.
3. Construct Te

edge, a set of tetrahedrons, that shares at 
least one edge with te0 except edge e.

4. Select a tetrahedron tex ∈ Te
edge and search for an 

edge-sharing tetrahedron as described above in steps 
2 and 3. Add the new edge-sharing tetrahedron to 
Te
edge and repeat until no entry is found.

5. If n(Te) �= n(Te
edge), e is a singular edge.

The detection of additional tetrahedrons to be removed 
phase determines a set of additional tetrahedrons to be 
removed, Tadd, in order to avoid a topological singu-
larity. When a singular vertex v is detected, Tv

edge and 
T̂ v
edge

(

= Tv ∩ T̄ v
edge

)

 are defined. In order to prevent the 
loss of volume as much as possible, the number of tetra-
hedrons to be removed should be minimized. Therefore, 
the smaller set between Tv

edge and T̂ v
edge is selected as Tadd 

by comparing n(Tv
edge) and n(T̂ v

edge). For the same rea-
son, when a singular edge e is detected, the smaller set 
between Te

edge and T̂ e
edge = Te ∩ T̄ e

edge is selected as Tadd. 
After Tadd is determined, it is added to Trm as mentioned 
at the beginning of this section. 

Examples of fracture simulations are shown in Fig. 11. 
In the simulation without topological-singularity avoid-
ance (Fig. 11b), tetrahedrons connected with only a sin-
gular vertex or edge exhibit unstable deformation. On the 
other hand, in the simulation with topological-singularity 
avoidance (Fig. 11a), the risk of instability is eliminated, 
and the simulation continues in any fracture situation.

Implementation
The calculation of the maximum principal stress on each 
element is computed in parallel by the GPU. To calcu-
late the eigenvalues of the stress tensor, the Jacobi eigen-
value algorithm is adopted. The singularity avoidance 
algorithm is implemented on a six-core CPU because it 
requires numerous conditional branchings and compli-
cated data structures for the mesh topology. However, it 
is not a time-consuming procedure and is rapidly com-
puted, even on a CPU.

Results
Performance evaluation of GPU implementations
We compare three implementations of matrix/vector 
assembly and matrix rearrangement procedures: (1) a 
CPU with no parallelization, (2) a six-core CPU with 
multithread parallelization, and (3) a GPU implementa-
tion. Cube-shaped models discretized by various num-
bers of tetrahedrons were used for the comparison. The 
surface nodes of the two opposite sides of the cube are 

Fig. 9 Example of actual input arrays and compressed arrays



Page 11 of 16Sase et al. Robomech J  (2015) 2:17 

constrained. The execution times of the three differ-
ent implementations of the matrix/vector assembly and 
matrix rearrangement procedures are plotted in Figs. 12 
and 13, respectively.

Blunt dissection simulation
Blunt dissection is an operation for separating tissues 
without cutting. It is generally performed along fissures 
by breaking connective tissues. In neurosurgery, sur-
geons perform cutting operations using scissors or blunt 
dissection depending on the context of the surgery.

An FE model of a cube with a fissure (4807 nodes and 
19,600 tetrahedrons) was used in the simulation. It was 
assumed that the fissure was filled with connective tis-
sues, the Young’s modulus and Poisson’s ratio of which 

were 100 and 0.4 Pa, respectively. The Young’s modulus 
and Poisson’s ratio of the main body were assumed to 
be 1000 and 0.4  Pa, respectively. The fracture threshold 
stresses were set to the same values as their Young’s mod-
uli. Note that these mechanical parameters are deter-
mined to distinguish the relative stiffness of the materials 
and not validated by experiments. Initially, the tips of 
two spatulas were inserted into the fissure, and then they 
were opened to dissect the connective tissues at a velocity 
of 5.0 mm/s. In order to compare different implementa-
tions, this simulation was executed by each implementa-
tion with a constant time step of 20 ms.

The simulation was conducted without oscillation 
or divergence. Figure  14a, b show the snapshots and 
its principal stress visualizations during the simula-
tion. Figures  15 and 16 show the calculation time and 
the number of removed elements at each time step. An 
additional movie file shows the following simulations in 
greater detail (see Additional file 1).

Brain retraction simulation
Brain retraction is an operation performed by push-
ing soft tissues to create a working space. One of the 
important brain fissures, which are frequently performed 
retractions, is the the Sylvian fissure. The Sylvian fissure 
is filled with the arachnoid mater, which needs to be dis-
sected by surgeons. This section shows the result of a 
brain retraction simulation conducted in real-time by 
user input using a Sensable Phantom Omni haptic device. 
The reaction force to the user-controlled instruments 
was fed back through the haptic device. The simulation 
was conducted under the assumption that the arachnoid 
mater was dissected beforehand. The task objective given 
to the user is to retract the brain tissues and expose the 
brain tumor existing at the bottom of the Sylvian fissure. 

(a)

(b)
Fig. 10 Example of topological singularity detection. a Singular 
vertex detection. b Singular edge detection

Fig. 11 Examples of fracture simulations [31]. These sequences show soft-tissue fracture simulations executed a with and b without topological-
singularity avoidance
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A brain hemisphere mesh model (8647 nodes, 32,639 ele-
ments) was used in this simulation. This model was con-
structed by scanning an anatomical model of the human 
brain, Brain Model C20 (3B Scientific GmbH), and modi-
fying it using 3D modeling software. The bottom nodes 
of the hemisphere mesh model were fixed; hence, the dis-
placements of the bottom nodes were always set to zero.

Figure  17 shows the overview of the simulation. An 
operator moves a pointer displayed on the monitor by 
controlling a haptic device. Using the pointer, the oper-
ator can pick up and control the spatulas in the virtual 
space. Collision detection is performed between each 
spatula and the brain model. The reaction force applied 
to the spatula from the virtual brain is fed back by the 
haptic device. As seen in Fig. 17, the Sylvian fissure was 
opened by two spatulas and the tumor was exposed. 
Figure  18 shows the calculation time of the time steps. 
The calculation times for assembling a matrix, rearrang-
ing a matrix, and solving a linear system of equations are 
plotted. In this simulation, a stress analysis and the frac-
ture procedure were not performed. Figure 19 shows the 

time history of the raw and filtered reference forces by a 
first-order low-pass filter (cut-off frequency 1.0 Hz). An 
additional movie file shows the following simulations in 
greater detail (see Additional file 1).

Discussions
Figures  12 and 13 show that the GPU implementations 
had the highest speed among the three implementations 
in both evaluations. In the comparison of the matrix/
vector assembly, for the model with 15,625 nodes and 
69,120 elements, the GPU implementation (10.7  ms) 
was 19.7 times faster than the single-CPU implemen-
tation (210.9  ms) and 3.9 times faster than the six-core 
CPU implementation (41.9  ms). In the comparison of 
the matrix rearrangement, for the same model, the GPU 
implementation (11.0  ms) was 7.1 times faster than the 
single-CPU implementation (78.4  ms) and 5.1 times 
faster than the six-core CPU implementation (56.3 ms).

The results of the blunt dissection simulation show 
that the combination of our GPU implementation and 
the fracture algorithm worked as expected. As seen in 
Fig.  14b, the connective tissue was easily deformed and 
removed owing to the stress concentration because it was 
specified to be softer than the main body. In Fig. 15, the 
calculation time jitter is shown. One of the causes is the 
difference in the convergence times of the conjugate gra-
dient method. Another cause is the change in the bound-
ary condition. When the boundary condition changed, 
the matrix rearrangement procedure is executed and 
takes additional calculation time. The average calcula-
tion times of the three implementations, a CPU with no 
parallelization, a six-core CPU with multithreaded paral-
lelization, and a GPU implementation, were 103, 41, and 
17 ms, respectively. The speed-up of the GPU versus the 
CPU was 6.1. Only the GPU realized smooth animation 
with a refresh rate greater than 30 Hz. As seen in Fig. 16, 
the fracture started at step 25, and the peak number of 
removed elements was 33 at step 60. It is shown that the 
number of removed elements did not affect the calcula-
tion time. This result shows that this approach is prefer-
able for surgery simulation because the simulation can be 
continued at the same refresh rate throughout.

On the other hand, the results of the brain retraction 
simulation show that our implementation could not 
achieve the target calculation speed. The range of calcu-
lation time for a time step was 40–80  ms. This refresh 
rate is not sufficient for visually acceptable animations 
and reaction-force rendering. The reference force was 
discontinuous, and the force display could oscillate if we 
did not apply the low-pass filter. Although the low-pass 
filter reduced the discontinuous force feedback, this is 
not a fundamental solution for displaying realistic reac-
tion forces. From these results, further acceleration is 

Fig. 12 Computational time for matrix assembly

Fig. 13 Computational time for matrix rearrangement
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needed to achieve stable and visually acceptable simu-
lation. Moreover, the development of a method for dis-
playing smooth and stable forces is a topic for future 
study.

Conclusion
In this paper, a real-time simulation scheme for soft-
tissue deformation and fracture for brain retraction 
is proposed. GPU implementations for matrix/vec-
tor assembly and a matrix rearrangement procedure 
for accelerating a corotational FEM including bound-
ary-condition-based collision response are proposed. 

A simple mesh modification method considering the 
avoidance of topological singularities is developed and 
combined with the proposed GPU-accelerated FEM 
framework. Finally, blunt dissection and brain retraction 
simulations are performed using the proposed imple-
mentation. Both simulations can be conducted in real 
time. Although the proposed method could not achieve 
a visually acceptable update rate for the brain retraction 
simulation using our target brain hemisphere model, it 
performs faster than the CPU implementations.

In this study, viscoelasticity and material nonlineari-
ties were not considered. In order to obtain more realistic 

Fig. 14 Results of the blunt dissection simulation. a Snapshots. b Stress visualization. The colors of the tetrahedrons represent the regularized 
absolute values of the maximum principal stress max(|σ1|, |σ2|, |σ3|)/σmax, where σi (i = 1, 2, 3) and σmax are the principal stresses and the fracture 
threshold stress, respectively

Fig. 15 Computational time of the blunt dissection simulation Fig. 16 Number of removed elements



Page 14 of 16Sase et al. Robomech J  (2015) 2:17 

material behavior, we plan to integrate material proper-
ties more precisely in our future implementation.
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Appendix 1: Rotation of a deformed tetrahedron
A rotation matrix of a tetrahedron element is obtained 
by SVD of the deformation gradient tensor F  [27]. This 
formulation is stable even if the elements are inverted 
(see Fig. 3b). In the case of the first-order tetrahedral ele-
ment, F transforms an edge vector of the initial shape 
dmj into an edge vector of the deformed shape dsj as 
dsj = Fdmj (j = 1, 2, 3). From this equation, F is cal-
culated as F = DsD

−1
m , where Ds = [ds1 ds2 ds3] and 

Dm = [dm1 dm2 dm3]. F can be represented as

where U and V are orthogonal matrices, and � is a diago-
nal matrix. The rotation matrix is calculated as

where C � diag
[

1, 1, det(UV
T)
]

 [28].
To obtain the rotation matrices of the tetrahedral ele-

ments, SVD of a large number of 3× 3 matrices described 
in Eq.  (18) must be performed. However, most existing 
parallel implementations of SVD are specialized for large 
matrices [29]. For SVD of a large number of small matrices, 
Bedkowski et al. introduced an algorithm for three-dimen-
sional reconstruction using mobile robots [30]. In the pre-
sent work, the algorithm introduced by Bedkowski et al. is 
modified. The modified algorithm is summarized as follows:

1. Diagonalize FTF by the Jacobi eigenvalue algorithm 
as FTF = V

T
SV, where V is an orthogonal matrix, 

and S is a diagonal matrix whose elements are the 
eigenvalues of FTF.

2. Construct a matrix � whose diagonal elements are 
the singular values of FTF. The singular values are 
obtained by calculating the square root of each diag-
onal element of S.

3. Calculate U = FV�−1.
4. U and V are used in Eq. (19).

In this algorithm, the eigenvalue approach is different 
from that of Bedkowski et al. They calculated the eigen-
values by obtaining the roots of a cubic polynomial. On 
the other hand, we adopted the Jacobi eigenvalue algo-
rithm to simplify the implementation.

Appendix 2: Formulation of a dynamic FEM
The equation of motion for a deformable object is written as

where M and C are a mass matrix and a damping matrix, 
respectively. M is a diagonal matrix determined by 

(18)F = U�V
T,

(19)R = UCV
T,

(20)Mẍ + Cẋ + (Kx + f 0) = f ext,

gathering the equivalent masses of all nodes from the 
node-share tetrahedrons: mi =

∑

Ti
mTi/4, where mi 

is the equivalent mass of node i, Ti is a tetrahedron that 
shares node i, and mTi is the mass of Ti. In general, C is 
determined on the basis of the material constitutive law. 
However, for simplicity, Rayleigh damping is adopted in 
this study:

where α and β are scalar values representing the damping 
effect, which are selected heuristically for stabilizing the 
simulation.

Eq.  (20) can be written in the same form as the linear 
FEM form as

by defining a vector f = f ext − f 0. When we substitute v 
for ẋ, the time derivatives of the variables are defined as

In order to avoid numerical instability in the dynamic 
simulation, we adopt implicit time integration because it 
has unconditionally stable characteristics. Implicit time 
integration is formulated as

By substituting Eqs.  (21) and (25) into Eq. (26), vi+1 can 
be obtained by solving the following equation:

As discussed in “Collision response of soft tissues”, the 
contact nodes move together with the rigid body; hence, 
xd and vd are known, whereas f d is unknown. The forces 
applied to the unconstrained nodes are zero, i.e., f f = 0. 
Therefore, Eq. (27) can be rewritten as

where

(21)C = αM + βK,

(22)Mẍ + Cẋ + Kx = f

(23)ẋ = v,

(24)Mv̇ =− Cv − Kx + f .

(25)xi+1 = xi +�t vi+1,

(26)Mvi+1 =Mvi +�t
(

−Cvi+1 − Kxi+1 + f i+1
)

.

(27)

(

(1+ α�t)M +
(

β�t +�t
2

)

K

)

vi+1

= Mvi +�t

(

−Kxi + f i+1

)

.

(28)

(

(1+ α�t)M̄ +
(

β�t +�t
2

)

K̄

)

v̄i+1

= M̄v̄i +�t

(

−K̄x̄i + f̄
i+1

)

,

M̄ =

[

Mf 0

0 Md

]

, K̄ =

[

Kff Kfd

Kdf Kdd

]

,

v̄ =
[

vfvd
]

, x̄ =

[

xf
xd

]

, f̄ =

[

f f
f d

]

.
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Eq. (28) is rewritten as
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