Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Table 2 Simulation parameters

From: Modeling and control of planar slippage in object manipulation using robotic soft fingers

Length (m)Inertia (kgm2)Mass (kg)Coefficients
\(l_1\)0.025\(I_{c_1}^{xx}\)\(m_1 l_1^2/12\)\(m_1\)0.02c0.012
\(l_2\)0.20\(I_{c_1}^{yy}\)\(m_1 l_1^2/12\)\(m_2\)0.2\(\gamma\)0.02
\(l_3\)0.20\(I_{c_1}^{zz}\)0\(m_3\)0.2k3
\(l_{c_1}\)\(l_1/2\)\(I_{c_2}^{xx}\)0\(m_o\)0.1\(C_{\text {eq}}\)300 (Nm/s)
\(l_{c_2}\)\(l_2/2\)\(I_{c_2}^{yy}\)\(m_2 l_2^2/12\)  \(\mu _c\)0.5
\(l_{c_3}\)\(l_3/2\)\(I_{c_2}^{zz}\)\(m_2 l_2^2/12\)  \(\mu _g\)0.1
R0.02\(I_{c_3}^{xx}\)0  \(\lambda _c\)0.620r (m)
W0.02\(I_{c_3}^{yy}\)\(m_3 l_3^2/12\)  \(\lambda _g\)0.0674 (m)
a0.20\(I_{c_3}^{zz}\)\(m_3 l_3^2/12\)    
b0.15\(I_o\)\(m_o(a^2+b^2)/12\)