
Tay et al. Robomech J (2016) 3:17
DOI 10.1186/s40648-016-0056-0

RESEARCH ARTICLE

Service robot planning via solving
constraint satisfaction problem
Noel Nuo Wi Tay*, Azhar Aulia Saputra, János Botzheim and Naoyuki Kubota

Abstract 

The problem of demographic shifts towards the elderly is deteriorating, as the relative number of caregivers is insuf-
ficient to provide the support required for their wellbeing, which is further aggravated by the increasingly hectic life-
style. Service robot is getting more prominent as a possible solution. Robot manipulation and mobility is an important
field, but they also require high level planning for these minute actions in order to provide ample support. Automatic
service composition, contributed significantly by web services, offers the necessary technology for the task. Robot
planning problem can be solved by representing it as constraint satisfaction problem (CSP) due to it being able to
support loose binding of services and variables of wider domain. This paper further extends the structure of the CSP
planner to enable intelligent decision-making. Besides, standardization is made on the properties and relationships
of objects such that planning rules can be easily generated from knowledge base. Services and their corresponding
terms are designed for efficient planning. Case studies show that the system is able to perform tasks bounded by
complex logical rules. It also provides valuable insights into future enhancements and research.

Keywords:  Planning, CSP, Robot

© 2016 Tay et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

Background
The fraction of the elderly on the population pie is
increasing at an alarming level for developed countries.
It is estimated that the population of those above 60
years old in the world will double to 2 billion in the year
2050 [1]. The problem of demographic shifts towards the
elderly is particularly serious in Japan [2, 3], as the rela-
tive number of caregivers is insufficient to provide the
support required for their wellbeing. The issue is further
aggravated by the increasingly hectic lifestyle.

Smart homes and ad-hoc home automations are on
the rise to provide support for the elderly. Despite that,
installation and integration of the system requires tech-
nical knowledge. Besides, large variety of vendors and
standards brings more confusion instead of peace to the
elderly. We by no means say that smart home and home
automation fail to deliver. In fact, they are necessary in
the near future to provide the required assistance. At the
current stage, it is more appropriate to devise a physical

agent that can dispense service at a home yet to be sup-
ported or supported minimally by smart devices, and, at
the same time, allowing the evolution of the home to take
place to become a more autonomous environment. This
agent, or we shall call, service robot, should provide secu-
rity, assistance, communication and companionship to its
human occupants.

Various service robots have been developed over the
years. An example is the Human Service Robot (HSR)
developed by Toyota [4]. Robot manipulation and mobil-
ity is an important field for service robot. These are low
level actions, where they require high level activity plan-
ning in order to perform complex tasks. Service planning
is able to provide them with the high level overview of
how their minute actions will be carried out overtime.

Different approaches are used for service planning.
Service composition is initially applied to create compos-
ite services for various complex business requirements.
Services can be considered the building blocks of what an
agent can undertake at a certain time. To fulfill a goal, the
agent should execute a sequence of services. Overtime,
the idea is adopted by ubiquitous, pervasive computing
and robotic. In order to support service composition,

Open Access

*Correspondence: tay‑noelnuowi@ed.tmu.ac.jp
Graduate School of System Design, Tokyo Metropolitan University,
Hino, Tokyo, Japan

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-016-0056-0&domain=pdf

Page 2 of 17Tay et al. Robomech J (2016) 3:17

services come with semantic markups that describe their
functionalities, properties and conditions (pre and post
conditions of the service). With the semantic markup, it
is much more convenient to plan, reason and monitor
services, instead of relying on detailed descriptions of
the functions. It endows them with capabilities of being a
planning operator.

In the field of robotics, Markov decision process
(MDP) is a popular approach for robot motion planning.
The downside of this approach is that it lacks the com-
plexity required for service composition, which can be
delivered by logic-based approach [5]. The fact that MDP
is a statistical method gives them an edge in this respect
in dealing with uncertainty over logic-based approach.
Therefore, both statistical and logical approach can be
considered tackling different scope of the same problem.
In this paper, we will concentrate on the service com-
position performed by automated reasoning. It handles
the broad service composition such that it also provides
room for statistical or other specialized methods to figure
out the minute details.

In [6], OWLS-Xplan uses the semantic descriptions of
services defined in OWL-S for planning purposes. The
XPlan planning module will then generate the compos-
ite services. In this work, an XML dialect of planning
domain definition language (PDDL) is developed. This
makes the system PDDL compliant. Although the system
obtains semantic descriptions in OWL-S, it is not utilized
and semantic awareness is not achieved. In this case, the
planning module is required to perform exact matching
for service inputs and outputs.

In [7, 8] a framework was developed that converts ser-
vice composition tasks into planning problems expressed
in PDDL. The framework will then convert the devised
plan into an OWL-S composite process description. The
framework translates atomic OWL-S processes to plan-
ning operators. Goals are achieved through assembling
these generated planning operators. When no exact com-
posite services can be found, semantic information is uti-
lized to obtain composite services that best approximate
the goal.

To deal with complex tasks and to reduce planning
complexity, Hierarchical Task Network (HTN) [9] is
introduced. It uses method definitions in its planning
domain description, which specifies how the complex
tasks can be broken down into more manageable tasks
[10, 11]. The planning problem can then be specified as
a list of tasks to perform. The planner will then solve the
problem by applying the breaking down of tasks to every
task in the task list. This process continues until the tasks
are reduced to their atomic planning operator constitu-
ents that corresponds to a solution plan. The advantage
is its speed. In spite of that, the disadvantage is that the

planning process requires certain decomposition rules be
specified due to its hierarchical nature. This means that it
needs to be encoded in advance by an expert.

Answer set programming (ASP) is another popular
approach used for planning [12, 13]. It is a declarative
language that is suitable for knowledge representation
and non-monotonic reasoning. [12] integrated ASP with
cost learning to improve the performance of the planner
for robot planning, while [13] combines with MDP to
endow it with the capability to handle uncertainty. At the
moment, for complex sequence of services, these meth-
ods require heavy computational load and long planning
time.

The methods discussed thus far require exact match
ups between inputs, outputs and variables, or that it
assumes certain ontologies to handle heterogeneities,
or requires specifications of user anticipation and pro-
cedural templates. Domain and goal modeling through
constraint satisfaction problem (CSP) is developed to
create a language that allows users to express goals with-
out having to know about the details and interdependen-
cies between services [14–16]. Its domain representation
is of similar concept with the multi-valued planning task
(MPT) encoding [17]. Besides, another advantage is that
it is able to handle variables with large domain efficiently,
which is quite prevalent in the field of autonomous home
such as temperature value and user location. Although
the CSP planner might be slower than some state of the
art methods [11, 18, 19], it can support complex goals
and can handle variables with large domain efficiently.
It has been applied to robot planning [15]. But the CSP
planner proposed does not show intelligence in making
choices as argued in [20]. Besides, no standardization is
made to function/predicate construction and domain
specification, which prevents automatic generation of
rules.

In this paper, robot planning problem is represented as
CSP, where sequence of plans is generated for the robot
to execute to fulfill goals. Through this approach, robot
individual services become loosely coupled, thus, ena-
bling more flexibility and enhancing reusability in service
design. Flexibility is achieved in the sense that the design
of services does not need to take into account the details
and functionalities of other services - they only need to
know the preconditions before and effects of the states
after service execution, where it is up to the CSP planner
to arrange them to obtain desirable plans to fulfill goals.
Being reusable means the services can be applied to dif-
ferent applications without having to manually redefine
rules pertaining planning, as in the redefinition of sub-
goals from HTN methods. Besides, constraint program-
ming supports variable of larger domain more efficiently,
which allows natural processing of constraints involving

Page 3 of 17Tay et al. Robomech J (2016) 3:17

values such as integers and large finite domain data
types. In this case, goals and rules involving numbers (for
example, air conditioner need to be switched on if tem-
perature rise above certain value) can be combined with
robot activity planner under one umbrella of declarative
language.

This paper further extends the CSP planning structure
proposed in [15] to support making choices of different
objects as part of planning process, by endowing dynamic
response variables in functions and predicates with finite
domain data types. Besides, standardization is made in
determining sub-locations for robot mobility as well as
function and predicate specifications relevant to objects
of the house, where all these can be easily generated auto-
matically from knowledge base inference (for example,
generating relevant objects and their classes to be filled
into planning functions and predicates from SPARQL
query or making inference through OWL description
logic from home knowledge base. Interested readers can
refer to ontology building from [21]). Original work in
[15] does not provide such specifications (such as how
sub-locations should be defined) and grounds the func-
tions and predicates (such as the grounded terms for beer
and its property). One may argue that all functions and
predicates can ultimately be grounded, but this comes
at a price of (1) understandability and (2) CSP planning
optimization. Grounded terms are harder to interpret,
at least during development stage, and thus, compro-
mise understandability, where information transfer from
knowledge base is less intuitive. Grounded terms may
impose additional constraints on CSP based planner and
additional difficulty for optimization. As CSP solver can
be built to specialize in planning tasks, it does not need
grounded terms as in Boolean Satisfiability and may even
exploit functional forms for faster heuristic search as well
as supporting weighted CSP, which is subject of future
work. This paper provides a much more complicated
home environment case, yet at the same time, employ-
ing standardized approach in service design that can
be easily generated automatically and applied to other
environments.

Methods
Planning and execution of plans (termed orchestrator)
are performed by a single mobile robot. The plans involve
high level plans like where the robot should go to, open-
ing doors, picking up certain objects and so on. It does
not involve minute details such as how the robot should
open doors through the coordination of servos and visual
input. In this work, when a robot is expected to execute
a plan, the robot is already in an environment that is
conducive or possible to execute such plans. The plan-
ner and the orchestrator will execute a sequence of plans

to prepare such an environment. For example, when the
robot needs to switch on a light, the planner will first
tell the robot to go near the corresponding switch before
switching it on with its manipulators.

For this work, a few basic movements of the robot are
assumed, which are, mobility, tuning up/down, opening
and closing, switching on and off, picking and putting
objects. It is assumed that the robot can hold some-
thing while performing open/close and tuning up/down
actions. Planning and execution will revolve around
these basic movements to achieve certain goals. Planner
module is responsible for the planning and passing com-
mands to the robot for its execution. Given a certain goal,
planner module will compose a sequence of plans for the
robot to execute such that after the plans are completed,
the goal is achieved. For example, given that the goal
is to place a canned soft drink in the fridge and that all
cabinet needs to be closed, the robot will first find where
the soft drink is. If there is one that happens to be in the
kitchen cabinet, the robot will approach it, open the cabi-
net and pick up the soft drink, and then close it. It will
subsequently approach and open the fridge, after which
it will place the canned drink before closing it. No prior
programming is required for the plan.

This work emphasizes on generating plans, thus, time
to achieve this is assumed to be acceptable. It is also
assumed that the syntactic statement used by the planner
for the planning problem describes the actual environ-
ment. Therefore, failure or success of robot in achiev-
ing its task is reflected in the environment of planning
problem.

Planner module
Figure 1 shows the flow chart of the planning and execu-
tion process. Three important components of the planner
module are the variables, services and goals. Variables
record the current state of robot and the environment.
Services are activities that the robot can perform, which
have preconditions and effects. Precondition contain a
list of conditions that need to be fulfilled by the variables
before the plan can be executed, whereas effect is the
changes that will occur after the service is implemented.
The goal is the final condition that needs to be met by the
variables. Planner module consists of a planner and an
orchestrator. Planner will compose a sequence of plans
according to current variable state. If a solution is found
by the planner, the plan will be passed on to the orches-
trator to execute the plan. Orchestrator’s role is to pass
commands to the robot to execute the plans accordingly.

Given the available variables, services and goals, the
planner will compose a sequence of plans such that, after
implementation, the goal will be fulfilled. The sequence
of plans can be likened to theorem proving [22]. Every

Page 4 of 17Tay et al. Robomech J (2016) 3:17

subsequent plans will have their preconditions met, and
will impose changes for the next plan to drive the vari-
ables to what is required by the goal.

The following is an explanation of the flow chart in
Fig. 1. When the program starts, the state will be at state
-1 (note that the use of the word ’State’ here is only for
explanation in Fig. 1. State -1 only occurs once when the
program starts. During this state, start-up booting will
occur as well as extracting crucial information from the
knowledge base. The first goal is also obtained at this
stage. Planning will occur to devise a sequence of plans
to fulfill the goal. If a solution is found, the program will
proceed to state 1. Otherwise, it will go to state 4, signify-
ing a failure in finding solution. The purpose of state 1 is
to obtain the next service in the plan for execution, after
which will be executed at state 2. State 2 implements as
the orchestrator. It first checks whether preconditions
of the current activity are met or not. If not, the pro-
gram will proceed to state 0, or else, the service will be

executed and returns to state 1 to pick up the next ser-
vice. State 0 resembles state -1, just that it doesn’t require
start up phase. The transition from state 2 to state 0 ena-
bles dynamic planning. This is important to deal with
uncertain situation, where variables cannot be confirmed
except during run-time. In this case, re-planning can
occur at state 0 if expectation is wrong. After plan exe-
cution, state 3 will re-check whether the goal is fulfilled,
upon which is yes, it will proceed to state 5. If the goal
cannot be achieved, the program will proceed to state
4. The final state is state 6 which records a log for future
reference or learning. The program will restart at state 0
after selecting the next goal.

General domain description
Domain description will be based on the work of [15].
We denote ϑ = term set (list of variables). ϑ contains V
terms, which consists of knowledge, effect, dynamic
response and static response terms confined by their

Fig. 1  Planning and execution flow. When the program starts, the state is -1. Given the goal, the state will change to 1 if solution is found, 4 other-
wise. Execution is done through state 1 to state 3. When the plan execution is finished, the state will proceed to state 5 and 6, upon which new goal
will be obtained for subsequent planning

Page 5 of 17Tay et al. Robomech J (2016) 3:17

own domain. Term can be a variable, constant or func-
tion. Response terms represent information that can
only be obtained from objects, information that comes
from sources not within ϑ. During planning stage, static
response terms remain the same throughout all planning
sequence and represent an unknown value (thus, initiali-
zation constraint is imposed on them), whereas dynamic
response can change for every sequence. They can take
on whatever value to facilitate constraint satisfaction
during planning that employs an optimistic approach
(value taken on by response terms are considered true).
Dynamic response terms can also be determined or hav-
ing their domain constrained by current, past or future
variables via the use of rules (In this work, only past
and current variables are considered). Response term
usage will be made more evident in subsequent sections.
Knowledge terms record information for future refer-
ence. Effect terms are used for external control.

A state is a tuple of values to terms at a particular plan
implementation sequence index t that is denoted as
Xt = (X1

t ,X
2
t ...X

V
t) where X1

t ,X
2
t ...X

V
t ∈ ϑt, confined by

their domains denoted by D1,D2...DV . As there is a finite
limit to the number of sequence per plan being planned
denoted as K, thus, 0 ≤ t < K . For the current work,
domains of the variables of the terms remain unchanged
over time.
α is the set of activities, where a = (id(a),

precond(a), effect(a)) ∈ α. id(a) is the identifier of the
activity. There is an additional activity in α that does
nothing. It has no pre-conditions and effects, termed as
Nop.
precond(a) is the pre-condition that need to be met

before the activity can be executed, such as the robot
needs to near the cabinet before attempting to open it.
Precondition of an activity can be described as follows:

where var ∈ ϑ, val is a constant, ⊙ ∈ {+,−} is a binary
operator, • ∈ {=,<,>, �=,≤,≥} is a relational operator,
and nPred is an n-ary predicate.
effect(a) is the changes that will be induced after

the activity is completed. It emulates the state transi-
tion given the activity a, such that its logical formula-
tion can be used to impose constraints on subsequent
sequence of the plan for activity planning. It should be
emphasized that the actual object manipulates variables
during run-time after planning instead of the effect(a)

(1)

precond(a) ::= prop|precond(a) ∧ precond(a)|precond(a)

∨precond(a)|¬precond(a)|precond(a)

→ precond(a)

(2)
prop ::= var • var|var • val|(var ⊙ var)

• var|(var ⊙ var) • val|nPred

formulation (which is only used for planning). Effect of
an activity can be formulated as or a combination of the
following: vart+1 = val, vart+1 = vart, vart+1 = f (v1, v2)
where v1, v2 ∈ ϑt or v1, v2 are constants, and f is the sum,
subtraction and Boolean operation.

For simplification, when necessary, we will denote the
above relations as vart+1 = effectst(a). This relation is
read differently between the planner and the orchestra-
tor. During planning, vart+1 = effectst(a) means the truth
statement that: (effectst(a) includes an effect towards the
variable var) implies (vart+1 = effectst(a)) holds true.

On the contrary, for orchestrator, it is seen as
vart+1 := effectst(a), which indicates that the term var
is being modified according to effectst(a). Therefore,
depending on whether planner or orchestrator is referred
to, the correct interpretation has to be made. There is
no arrow of time for planner, thus, the relation is seen as
equality. For orchestrator, it is seen as an assignment.

Though this work only use the specified effects, more
sophisticated effects, such as conditional effects, can
be used as shown in [15]. That said, the extension to
previous work [15] is shown in Fig. 2, indicated by the
red bounding box. The extension is the use of dynamic
response terms and the rules for their transition. This
extension enables inference capabilities and the ability to
make choices to be realized as part of planning process.
As dynamic response terms and their corresponding
rules are dependent on the activity the robot is perform-
ing, detailed explanation will be given in “Design of ser-
vices” section.

Planning as constraint satisfaction problem
Given goals, which are represented as propositions, activ-
ity planning can be obtained to fulfill the goal by repre-
senting the problem as CSP and solve it. A CSP is a triple
CSP = �χ ,D, ζ �, where χ is a set of terms, D is the set of
domains of the variables of the terms in χ, and ζ is a set of
constraints over χ. A solution to a CSP is an assignment
of values to the terms in χ such that the values fall within
D and all constraints in ζ are satisfied. In this work, D is
unchanged throughout the activity sequence. It is consid-
ered determined when a goal is passed to the planning
process flow in Fig. 1, and will stay that way until the goal
is achieved.

In terms of the ISS planner, χ = {X1,X2...XK }∪

{A1,A2...AK−1} ∪ R, R is a set of response terms, and At
is the chosen goal at sequence index t. Unlike X and A,
variables in R remain the same throughout the planning
sequence.
ζ consists of constraints imposed by a chosen activity at

t from activity pre-conditions and effects, inertia law, ini-
tial and final variable state and maintenance of achieved
goal constraints. Initial variable state is just a constraint

Page 6 of 17Tay et al. Robomech J (2016) 3:17

that dictates the values of all variables (obtained from
object state module) before any planning. Final state con-
straint consists of the goal proposition that needs to hold
at sequence index K.

Constraints from activity pre-conditions:
(At = a) → precond(a) where ∀a ∈ α

Constraints from activity effects:
(At = a) → [(vart+1 = effectst(a)) ∧ Fr] where ∀a ∈ α

where Fr is the inertia law constraint, which indicates
that for every other variables var (excluding those from
R) not affected by effectst(a), vart+1 = vart.

Maintenance of achieved goal constraint:

This constraint dictates that whenever a goal is
achieved at sequence index t̄ < K :
At = Nop where t̄ < t < (K − 1)

Maintenance of achieved goal constraint is just one of
the goals specified in [15], though it is sufficient for the
current work.

Constraints are fed to a solver to obtain a sequence of
A, which are the activities that need to be implemented
to fulfill the given goals. Z3, which is a state of the art
SMT solver, is used to obtain the plan [23]. The plan
will be solved by continually increasing K until the con-
straints are satisfied.

Fig. 2  Constraint graph used for robot planning. Although there is no explicit definition of time in CSP planning, the arrows show the flow of plan.
The red bounding box shows the extension of this work from that of [15], which consists of dynamic response variable and rules that dictates the
values of subsequent dynamic response variables

Page 7 of 17Tay et al. Robomech J (2016) 3:17

Design of terms
The robot in this work is intended to fetch and place
objects, as well as opening/closing and switching on/off
switches. It needs to be able to move around to enable
it to perform the tasks. There are three types of objects,
which are, movable objects, non-movable objects and
location.

Movable objects consist of objects that can be moved
around by the robot like towel and cans. Non-movable
objects are objects that are fixed, but they may be able
to be operated by the robot. Examples of non-mova-
ble objects are bed, doors, cabinet and switches. The
robot itself is also considered a non-movable object for
convenience during planning which will be shown later
on. Human is also considered a non-movable object
as the assumption is that the human remain station-
ary during planning. If the human moves, due to the
ability to re-plan as discussed previously, the issue can
be easily solved. Location object consists of regions
on the home such as the living room, bedroom and
kitchen.

Apart from integer and boolean datatype, five new data
types are introduced to support the mentioned objects,
namely, NOType, MOType, Location, NOStateType,
MOStateType, NOID and MOID. NOType defines the
type (ex: cabinet, door, switch) of non-movable object
with ID defined in data type NOID. Likewise, MOType
defines the type (towel, paper, cup) of movable object
with ID defined in data type MOID. Location is the data-
type of location.MOStateType and NOStateType are the
datatype that defines the state of a movable and non-
movable object respectively.

There are two static functions (functions where the
output values remain the same throughout all planning
sequence), which are, FNOType : NOID → NOType and
FMOType : MOID → MOType. A constant is HumanLocation,
and a static predicate is NOLocation(NOID, Location).
FNOType maps a particular non-movable object to its

type (For example, mapping an object as a door). Like
wise, the same applies to FMOType, but that it applies to
movable object. The predicate NOLocation(a, b) states
the truth value whether a non-movable object a is in
location b. This is especially important for objects like
doors. HumanLocation stores where the human is at in
datatype Location

The subsequent terms explained in this subsection
can have their values changed in the course of planning
sequence. This means, given a term A, for a plan with K
sequence, there will be A× K number of variable A, each
for every sequence, where each has a unique definition
A1,A2...AK .

The function DYStateNOt :NOID → NOStateType
outputs the state of the non-movable object.

DYStateNOt(a) = b states that a is in a
state of b at sequence t. The same applies to
DYStateNOt :MOID → MOStateType, which is for mov-
able objects.

The function DYTunet :NOID → Int outputs the
numerical value (in integer Int type) associated with the
non-movable object at sequence t.

As movable objects will always be placed at a non-mov-
able object (ex: cup on a table, book with a human), the
function DYAtMOt :MOID → NOID maps a movable
object to a non-movable object it is placed at.

Three variables are included, namely, RobotLocationt ,
RobotApproacht and RobotHoldt. RobotLocationt stores
the location of the robot (with datatype Location) at
sequence t. RobotApproacht records the non-movable
object the robot is approaching. RobotHoldt is a boolean
variable determining whether the robot is holding some-
thing or not.

For proper functionality, three dynamic response vari-
ables are introduced, which are, Approachrest, MOIDrest
and RobotHoldrest. The role of these dynamic response
variables will be made more evident during the discus-
sion of the services.

Design of services
This subsection describes, but not limited to, three types
of services the robot is expected to perform. Although
only three types are listed, more services can be included
depending on the application. The four types are open/
closing service, tuning up/down service, mobility, and
put/pick service.

Open/closing service consists of two services, which
are opening and closing. These two services applies to
opening/closing of doors and switching on/off switches.

It has a precondition:
NOLocation(RobotApproacht ,RobotLocationt) = true

and effect:
DYStateNOt+1(RobotApproacht): = Open/Close respectively

The precondition has to make sure the robot is
approaching object stored in RobotApproacht and that
the robot is in location RobotLocation, before it can
open/close the non-movable object by manipulating
DYStateNO at sequence t + 1.

Tuning up/down service deals with numerical manipu-
lation that consists of (1) tuning up (increasing by 1), and
(2) tuning down (decreasing by 1).

It has a precondition:
NOLocation(RobotApproacht ,RobotLocationt) = true

and effect:

 respectively
Put/Pick service consists of robot fetching and placing

a movable object.

DYTunet+1(RobotApproacht): = DYTunet (RobotApproacht)+/−1

Page 8 of 17Tay et al. Robomech J (2016) 3:17

The preconditions for picking up objects are:
DYStateNOt(RobotApproacht) = Open

DYAtMOt(MOIDrest) = RobotApproacht
NOLocation(RobotApproacht ,RobotLocationt) = true

RobotHoldt = false

and effects:
DYAtMOt+1(MOIDrest): = NRobot

RobotHoldt+1: = true

The preconditions make sure that the movable
object the robot is trying to fetch is located in a non-
movable object with state Open through the predi-
cate DYStateNOt(RobotApproacht),and that the
robot is not holding anything via RobotHoldt = false.
They also make sure the object the robot is trying to
fetch (MOIDrest ) is located in non-movable object
RobotApproacht. MOIDrest is a dynamic response vari-
able, where its value is freely determined by the plan-
ner to aid optimistic planning which is inherent in
planning via solving CSP. If the preconditions are met,
the robot can pick object MOIDrest through setting
DYAtMOt+1(MOIDrest) to NRobot, where NRobot is the
non-movable object ID under datatype NOID for the
robot. RobotHold is set to true to indicate that the robot
is holding something.

The preconditions for putting objects are:
DYStateNOt(RobotApproacht) = Open

DYAtMOt(RobotHoldrest) = NRobot

NOLocation(RobotApproacht ,RobotLocationt) = true

RobotHoldt = true

and effects:
DYAtMOt+1(RobotHoldrest): = RobotApproacht
RobotHoldt+1: = false

For putting objects, the preconditions also specify that
the intended non-movable object be opened. It requires
the robot to hold movable object RobotHoldrest , which
is indicated by having NRobot as the output for func-
tion DYAtMOt. Just like MOIDrest, RobotHoldrest is
a dynamic response variable that stores the current
object the robot is holding. RobotHoldt = true is the
constraint where the robot is holding something. With
the preconditions met, RobotHoldrest will be placed at
RobotApproacht through DYAtMOt+1.

Mobility service consists of two services, that is, move-
ment within a room, and movement between rooms.

Movement within a room has the following precondition:
NOLocation(Approachrest ,RobotLocationt) = true

and effect:
RobotApproacht+1: = Approachrest
The robot will always be going towards a non-movable

object, as it is practically meaningless to go towards noth-
ing. Therefore, the precondition makes sure that a non-
movable object the robot is going to is within the current

room, where the dynamic response variable Approachrest
stores the object the robot is approaching.

Movement between rooms is required for every doors.
One can write a precondition as the following:

This precondition with existential quantifier takes a
longer time to plan from preliminary test. Another alter-
native is to build a service for every doors. The precondi-
tion is shown as follows:
DYStateNOt(V 1) = true

RobotLocationt = V 2

and effects:
RobotLocationt+1: = V 2

Services with above mentioned preconditions and
effects are built for every door and for every side. It
means that if there are two doors altogether, there are a
total of four such services, where each door takes up two
for the robot to move through the door in both direc-
tions. From the preconditions and effects, V1 is the door
object ID and V2 is the location the robot goes to after
passing the door.

Results and discussion
This section presents the case study of the planner for
robot service execution. The intention is to show the
applicability of the approach, while at the same time, pro-
vides insights into future developments.

Case study will show how the robot, given the standard
activities (mobility, open/close and pick/put), can fulfill
goals that can provide support for its human inhabitants.
It is done through simulation built via open dynamics
engine (ODE). Orchestrator from the planning module
constantly communicates with the robot. It sends service
instructions one at a time for the robot to execute, while
the robot will respond given every executed service. The
study is run on 2.5 GHz Intel Core i5 computer.

House setup
Case study is performed on a simulated home via ODE.
Fig. 3 shows the layout of the house. It contains 36 non-
movable objects (excluding human and the robot), 7
movable objects, 10 locations, and 10 doors. The num-
bers in white shown in the figure are the non-movable
object IDs.

Out of the all the non-movable object, the bed (ID 1)
and table (ID 34) cannot be manipulated. Doors, win-
dows, fridge, cabinets and washing machine can be

∃z(NOLocation(z,RobotLocationt) ∧ NOLocation(z, rest)

∧ (rest �= RobotLocationt)∧

DYStateNOt(RobotApproacht) ∧ (RobotApproacht = z)

∧ (FNOType(z) = Door))

Page 9 of 17Tay et al. Robomech J (2016) 3:17

opened/closed. Apart from doors, all non-movable
objects only have one associated location (indicated by
predicate NOLocation). Of all the non-movable objects,
only N37 is associated with DYTune, as N37 is consid-
ered a volume control for the living room fan. The loca-
tions are, Master bedroom, Living room, Kitchen, Wet
Kitchen, WC1, WC2, Bed room 2, Bed room 3, Car Porch
and the Garden.

Numbers preceded by ’subloc’ are sublocations for the
objects. Since the robot need to be near enough to an
object before it can manage it, the sublocations provide
such spots. Sublocations are not included in the plan-
ning, but their information with their corresponding
non-movable objects are stored in the knowledge base
such that they can be used during execution. This infor-
mation is crucial during path planning. For this work,
due to the simple grid-like layout, Floyd-Warshall algo-
rithm is used for path planning.

Details of the movable objects are shown in Table 1,
which shows their type and which non-movable objects
they are placed at. Information for these movable objects
are also extracted from knowledge base of the home. For
faster planning, one can limit the information to only
deal with the objects required.

For clarity, all IDs for non-movable object will be pre-
ceded by a capitalized N, and all movable object will be
preceded by M during the case studies. For example, the
door with ID 6 will be identified as N6, while the towel
with ID 5 in the washing machine N31 will be identified
by M5.

Speed comparison on different service design
Service design will have significant effect on how search
is performed to obtain solution. In this section, test is
performed to select whether to utilize a general service
that covers wide number of objects, or to duplicate the

Fig. 3  House layout. The house layout used for robot planning simulation. Blue parts are switches, red lines are windows, orange parts are cabinets,
Purple part is a fridge, green part is the table, pink part is the bed and brown part is the washing machine. The shapes with swinging curves are doors

Page 10 of 17Tay et al. Robomech J (2016) 3:17

services to handle these objects individually. Although
speed is not the main focus of this paper, but optimiza-
tion is required to make it general enough to cover wide
range of applications without specialized tweaking yet
fast enough for most environments.

That said, we will concentrate on two types of services,
that is, moving between locations (S1) and opening/
closing (S2) services. Both of these service types cov-
ers a wide range of objects, thus is important to select
the optimal approach to implement them to obtain the
best speed. We denote type A test as general service for
S1 and S2, type B test as general S1 and duplicated S2,
and finally type C test as duplicated S1 and general S2.
For clarity, explicit command means the goal is explicitly
specified (ex: moving object A to B), while implicit com-
mand means the goal is implied (ex: move any object
with property N out of D). Type A contains 6 services,
type B contains 25 services and type C has 91 services.
Table 2 shows the test result on the speed of planning for
all three types of services.

It can be observed that type B (general S1 and dupli-
cated S2) achieves the best result most of the time. Type
A is the slowest most of the time despite it having only 6
services to choose and search from, which shows gener-
ality comes at a price on speed. Type C, having the most
services at 91, beats type A in planning speed. Despite
that, its performance is insignificant compared to type B,
due to its high number of duplicated services. Therefore,
the subsequent case studies will utilize type B as design

approach for the services. Table 3 shows the details of all
type B services.

Summary of cases
This section briefly describes the six case studies used to
demonstrate the capabilities of the planning system.

Case 1: “Simple object fetch for human” is used as a
starting example on fulfilling an explicit goal of robot
fetching a book for its human master. It is also used to
show a difference between implicit and explicit goal.
Case 2: “Dynamic planning under uncertain situation”
shows how the planner deals with uncertain situa-
tion that causes inconsistencies. Uncertain situation
may cause information that is crucial for planning to
change without a prior update on the planner’s knowl-
edge. This case demonstrates dynamic re-planning to
tackle such issues.
Case 3: “Inferences for making choices” demonstrates
more clearly (compared to Case 1) the use of implicit
goals for the planner to make choices based on the
properties of objects, which is also an extended capa-
bility from previous work [15].
Case 4: “Reasoning and planning with numbers” dem-
onstrates how the CSP planner treats numerical rea-
soning and manipulation as part of the planning pro-
cess.
Case 5: “Reusability of activities” shows how the robot
activities can easily co-operate with the activity of
other smart devices installed in the smart home. It
reuses the activity definition of the smart device with-
out having to make further manipulations.
Case 6: “Complex goals” shows planning under more
complex implicit goals and its implications in time and
enhancements.

Case 1: Simple object fetch for human
A service robot need to be able to approach human as
well as fetching objects or them or picking or putting
objects according to command, without the user hav-
ing to dealt into too much detail of how it is done. This

Table 1  Movable object details

Object ID MOType NOID

1 Canned drink 22

2 Canned drink 20

3 Canned drink 12

4 Paper 34

5 Towel 3

6 Towel 31

7 Book 11

Table 2  Test on Different Service Design

Test no. Description of the goal Command Steps A (sec) B (sec) C (sec)

1 Approach N1 Explicit 4 0.431 0.219 0.294

2 Open all windows in master bedroom Implicit 7 1.357 0.938 1.346

3 Move M2 to N20 (same location) Explicit 9 2.27 1.03 1.76

4 Move any canned drink to M34 Implicit 9 3.36 2.74 5.21

5 Move M5 to N31 (different location) Explicit 13 18.36 14.94 11.36

6 Switch on N10, N12, N14, N28 Explicit 22 655.40 272.67 609.35

Page 11 of 17Tay et al. Robomech J (2016) 3:17

case study on object fetch showcases how the robot is
able to find the book (from knowledge of the knowledge
base) and deliver it to the user, who is in the bedroom.
This case covers the aforementioned requirements of the
robot.

Case 1 assumes simple goals:
DYAtMOK (M7) = NHuman

∀z((FNOType(z) = Cabinet) → ¬DYStateNOk(z))

where the first goal states that the book with ID M7 will
be given to the human, and the second goal requires all
cabinet to be closed at the end of the plan. The robot ini-
tial location is at non-movable object N17.

The following shows the planning:
Case 1

Approach N6⇒ Open N6⇒ Approach N11⇒ Open
N11⇒ Pick up M7 from N11⇒ Close N11⇒ Pass Door
N6 to MasterBedroom⇒ Approach NHuman⇒ Place M7

Planning time= 1.335 seconds
Figure 4 shows the robot’s plan execution. Given the

generated plan, the robot will first approach the door N6
to open it. It will then go to cabinet N11 to pick up the
book M7. After that, the robot move to the bedroom to
deliver the book to the human. A peculiarity that occurs
is the fact that the robot opens door N6 first, and then
returns to Cabinet N11, before going back to N6 to
enter the Master bedroom. This is because the planner
doesn’t know about the cost of paths. It only judge the

Table 3  Service preconditions and effects

No. Precondition Effect

1 NOLocation(RobotApproacht , RobotLocationt) DYStateNOt+1(RobotApproacht): = true

2 NOLocation(RobotApproacht , RobotLocationt) DYStateNOt+1(RobotApproacht): = false

3 NOLocation(Approachrest , RobotLocationt) RobotApproacht+1: = Approachrest

4 DYStateNOt(N6) ∧ RobotLocationt = MasterBedroom RobotLocationt+1: = LivingRoom

5 DYStateNOt(N6) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = MasterBedroom

6 DYStateNOt(N5) ∧ RobotLocationt = MasterBedroom RobotLocationt+1: = WC1

7 DYStateNOt(N6) ∧ RobotLocationt = WC1 RobotLocationt+1: = MasterBedroom

8 DYStateNOt(N9) ∧ RobotLocationt = WC2 RobotLocationt+1: = LivingRoom

9 DYStateNOt(N9) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = WC2

10 DYStateNOt(N15) ∧ RobotLocationt = Bedroom2 RobotLocationt+1: = LivingRoom

11 DYStateNOt(N15) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Bedroom2

12 DYStateNOt(N17) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = CarPorch

13 DYStateNOt(N17) ∧ RobotLocationt = CarPorch RobotLocationt+1: = LivingRoom

14 DYStateNOt(N18) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Bedroom3

15 DYStateNOt(N18) ∧ RobotLocationt = Bedroom3 RobotLocationt+1: = LivingRoom

16 DYStateNOt(N19) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Kitchen

17 DYStateNOt(N19) ∧ RobotLocationt = Kitchen RobotLocationt+1: = LivingRoom

18 DYStateNOt(N23) ∧ RobotLocationt = Kitchen RobotLocationt+1: = WetKitchen

19 DYStateNOt(N23) ∧ RobotLocationt = WetKitchen RobotLocationt+1: = Kitchen

20 DYStateNOt(N30) ∧ RobotLocationt = WetKitchen RobotLocationt+1: = Garden

21 DYStateNOt(N30) ∧ RobotLocationt = Garden RobotLocationt+1: = WetKitchen

22 DYStateNOt(N33) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Garden

23 DYStateNOt(N33) ∧ RobotLocationt = Garden RobotLocationt+1: = LivingRoom

24 DYStateNOt(RobotApproacht)∧

DYAtMOt(MOIDrest) = RobotApproacht∧ DYAtMOt+1(MOIDrest): = NRobot∧

NOLocation(RobotApproacht , RobotLocationt)∧ RobotHoldt+1: = true

¬RobotHoldt

25 DYStateNOt(RobotApproacht)∧

DYAtMOt(RobotHoldrest) = NRobot∧ DYAtMOt+1(RobotHoldrest): = RobotApproacht∧

NOLocation(RobotApproacht , RobotLocationt)∧ RobotHoldt+1: = false

RobotHoldt

26 NOLocation(RobotApproacht , RobotLocationt) DYTunet+1(RobotApproacht): = DYTunet(RobotApproacht)+ 1

27 NOLocation(RobotApproacht , RobotLocationt) DYTunet+1(RobotApproacht): = DYTunet(RobotApproacht)− 1

Page 12 of 17Tay et al. Robomech J (2016) 3:17

shortest number of activities based on the basic services
aforementioned.

An implicit goal of fetching the book can also be car-
ried out. Case 1 explicitly states which book to deliver
to the human. One can also set up an implicit goal as
follows:

where the planner will find any book to be delivered to
the human. Sequence of plans remains the same, except
that the average time of planning is 1.941 seconds, as it
covers a wider search space.

Case 2: Dynamic planning under uncertain situation
Planning needs to take into account the fact that the
environment will change in the course of planning or
plan execution. The planner explained in “Planner mod-
ule” section supports dynamic re-planning, which means,
if inconsistency is met, re-planning can take place, taking
into account current information.

In this case study, the robot needs to fetch the human
(who is in the living room) a canned drink. At the start of
the experiment, as shown in Table 1, 3 canned drinks are

∃z((FMOType(z) = Book) ∧ (DYAtMOK (z) = NHuman))

present in the home. During the experiment, we simu-
late the condition where a person takes away the canned
drink that the robot is after just before it reaches for it,
except for the last (or 3rd) canned drink. Case 2 goal is
simple as follows:

The generated plan (and re-planning) is shown as follows:
Case 2
Approach N19⇒ Open N19⇒ Pass Door N19 to the

Kitchen⇒ Approach N22⇒
Open N22⇒ Pick up M1 from N22⇒ Pass Door N19 to

the Living Room⇒ Approach
NHuman⇒ Place M1 at NHuman
Planning time = 1.82 s
Inconsistency during execution at “Pick up M1 from

N22”. Re-planning is performed...
Approach N20⇒ Open N20⇒ Pick up M2 from N20⇒

Pass Door N19 to the Living Room⇒ Approach NHu-
man⇒ Place M2 at NHuman

Planning time = 1.14 s
Inconsistency during execution at “Pick up M2 from

N20”. Re-planning is performed.

∃z((FMOType(z) = CanDrink) ∧ (DYAtMOK (z) = NHuman))

Fig. 4  Case 1: Simple object fetch for human. Step 1 is the starting point. The robot proceeds to master bedroom door(N6) and opened it in Step 2.
It then goes to the cupboard (N11), opens it, and gets a book, and closed the cupboard in Step 3. Finally, in Step 4, it goes into the master bedroom
and passes the book to the human

Page 13 of 17Tay et al. Robomech J (2016) 3:17

Pass Door N19 to the Living Room⇒ Approach N15⇒
Open N15⇒ Pass Door N15 to Bedroom 2⇒ Approach
N12⇒ Open N12⇒ Pick up M3 from N12⇒ Pass Door
N15 to the Living Room⇒ Approach NHuman⇒ Place
M3 at NHuman

Planning time= 2.17 s
Figure 5 shows the robot execution to fulfill the goal.

At the initial stage, there are three canned drinks, two
in the kitchen (with MOID M1 and M2) and one in bed-
room two (with MOID M3). The robot’s initial plan is
to fetch M1 from the fridge in the kitchen. Right before
it can fetch the drink, someone takes it. While try-
ing to pick an object, a precondition for the activity is
DYAtMOt(MOIDrest) = RobotApproacht that requires
the object the robot wants to fetch to be in the location
the robot approaches. Therefore, a missing M1 means the
precondition cannot be fulfilled, and thus, from Fig. 1,
this will lead to re-planning. Re-planning occurs until the
robot manages to get a canned drink and passes it to the
human.

Case 3: Inferences for making choices
As an example, when human gives command to turn on
the light in the living room, considering there are mul-
tiple lights, he/she would convey something like “Turn
on a dim light in the living room”, instead of “Turn on
light A32”. In this example, it doesn’t matter which light
is being turned on, as long as it is a dim light. Therefore,
properties of objects are much more crucial. This case
demonstrates the capability of the planner to make intel-
ligent choices based on the properties of objects it needs
to handle, instead of explicit definition of objects.

The goal is to fetch an object of type “Towel” and
located in the garden, and transfer it to cabinet N11. In
our case study, our home has two towels M5 (in the mas-
ter bedroom) and M6 (in the garden). In this goal, no
explicit definition of the object ID is specified. Instead
the planner needs to select these objects based on the
stated properties. The goals are shown as follows:

∃x, y((FMOType(x) = Towel) ∧ (DYAtMO0(x) = y)

∧ NOLocation(y,Garden) ∧ (DYAtMOK (x) = N11))

Fig. 5  Case 2: Dynamic planning under uncertain situation. Different colors of path trajectories shows different plans, where red represents
executed the first plan, which subsequently leads to green (due to missing M1), after which leads to the blue (due to missing M2). From step 1 to 3,
the robot tries to fetch M1 from the fridge N22. In step 3, due to missing M1 (due to someone taking it away), re-planning is performed, which leads
the robot to fetch M2 from the cabinet(N20) in step 4. As M2 is missing too, re-planning is performed, which leads to the robot fetching M3. It goes
to bedroom 2 in Step 5, and fetch M3 in the cabinet in Step 6. Finally, it brings it to the human in the living room in Step 7

Page 14 of 17Tay et al. Robomech J (2016) 3:17

The generated plan is as follows:
Case 3
Approach N33⇒ Open N33⇒ Pass Door N33 to

the Garden⇒ Approach N31⇒ Open N31⇒ Pick up
M6 from N31⇒ Pass Door N33 to the Living Room⇒
Approach N11⇒ Open N11⇒ Place M6 at N11

Planning time= 1.36 s
Executing the plan, the robot will transfer towel M6 in

the washing machine to N11. To get towel from the mas-
ter bedroom, all one needs to do is to change the location
to MasterBedroom in the goal as follows:

This demonstrates the ability to make intelligent choices,
where making inferences becomes part of the planning
process, which is an extension from [15] (where choices
need to be explicitly made). ASP approach [12, 13] can
provide such descriptive power, but currently it is still
new in the field of planning, and it cannot directly handle
numbers as shown in Case 4.

Case 4: Reasoning and planning with numbers
In alot of cases, manipulation and reasoning with num-
bers are required, such as the case in volume control and
triggers from numerical constraints. CSP planner is able
to cover these domains under one declarative language.
This case study will demonstrate this capability through
tuning the fan volume based on the temperature. Given
the following goal:

N37 is a volume tuner and has an initial state 2. Varia-
ble “Temperature” records the temperature of the house,
which can be easily embedded into the CSP planner. The
states that if the temperature rises above 30, N37 needs
to be tuned to more than 4.

Given the current temperature to be 32. The following
shows the plan:

Case 4
Approach N37⇒ Tune up N37 by 1⇒ Tune up N37 by

1⇒ Tune up N37 by 1
Planning time = 0.25 s
Since the temperature is more than 20, N37 needs to be

more than 4. With an initial value of 2, the robot needs
to find ways to realize this with the activities it has. The
robot will first approach N37, and then uses 1-increment
tuner activity three times to get N37 to 5.

Currently, from literature review, there is no approach
that can accommodate planning and number manipula-
tion and reasoning under the same declarative language,
except introducing an extension to it. To be able to

∃x, y((FMOType(x) = Towel)

∧ (DYAtMO0(x) = y) ∧ NOLocation(y,MasterBedroom)

∧ (DYAtMOK (x) = N11))

(Temperature > 30) → (DYTuneK (N37) > 4)

describe them in one declarative way has two advantages,
which are (1) Work on generalization of robot planning
can be done (2) Optimization method can be easily stud-
ied to improve planning.

Case 5: Reusability of activities
As stated in the introduction, robot is useful in the evo-
lution of the smart home, where it can dispense services
that are yet to be supported by available smart devices.
Since the number of smart devices will continue to
grow, the robot is required to co-operate with these
devices.

The services of these smart devices can be easily con-
structed with the precondition/effect definition [15],
which can be used by the CSP planner. In this case, we con-
sider the door to bedroom 2 (N15) to be installed a motor,
which will open/close the door automatically. The activity
definition is very simple, where it doesn’t have a precondi-
tion, and the effect is just DYStateNOt(N15) = Open or
DYStateNOt(N15) = Close.

Lets consider the goal where the robot needs to move
M3 (which is in bedroom 2) to the living room table
(N34) as follows:

The generated plan is as follows:
Case 5
N15 opens (automatic)⇒ Pass door N15 to bedroom

2⇒ Approach N12⇒ Open N12⇒ Pick up M3 from
N12⇒ Pass door N15 to the living room⇒ Approach
N34⇒ Place M3 at N34

Planning time = 0.73 s
As shown in the plan, the activity for the automatic

door can simply be executed to aid the robot. This can be
performed without having to redefine sub-goals or ontol-
ogies, or making additional rules regarding additional
alternatives. CSP planner can execute them where it sees
fit, which shows the benefit of reusability.

Case 6: Complex goals
Case 6 showcase the ability to handle complex goals. In
Case 1, goals are considered direct commands from the
user. Yet in a lot of cases, goals are imposed by environ-
mental situations and implicit rules, such as the opening/
closing of the appropriate doors to cut off rooms to pre-
vent smoke from spreading, turning on the right amount
of light when the surveillance camera is activated, and so
on.

For this case, assume the user wants to transfer a cold
drink out of the fridge (N22) while he/she is attending
something else in the wet kitchen, and that there is an
inherent rule where the fridge must always be stocked
with canned drinks. Besides, there is a little smoke in the

DYAtMOK (M3) = N34

Page 15 of 17Tay et al. Robomech J (2016) 3:17

wet kitchen, which triggers a goal to request for window
in the wet kitchen to be opened. The goals, both from
human commands and trigger are listed below:

Goal 1:
∃x, y((FMOType(x) = CanDrink)

∧ (DYAtMO0(x) = N22) ∧ (DYAtMOK (x) = y)

∧ (FNOType(y) = Cabinet) ∧ (DYStateNOK (N22) = Close)

∧ (DYStateNOK (y) = Close))

Goal 2:
∃z((FMOType(z) = CanDrink) ∧ (DYAtMOK (z) = N22))

Goal 3:
∃x((FNOType(x) = Window) ∧ (DYStateNOK (x) = Open)

∧ NOLocation(x,WetKitchen))

The first goal states that there is a canned drink,x ,that
should be initially in the fridge and at the final stage,
should be in an object, y, that is of type ‘Cabinet’. This
y should be closed at the final stage, and, like wise for
the fridge. The second goal states that there is a canned
drink, z, which should be in the fridge at final stage. The
third goal states that an object x which is of type ‘Win-
dow’ and located in the Wet Kitchen should be opened.
This goal is the smoke triggered goal.

The goals require the planner to make choices on the
objects it need to fetch as well as the windows it needs to
open, which demonstrates implicit goals.

The following shows the plan:
Case 6
Approach N19⇒ Open N19⇒ Pass door N19 to the

kitchen⇒ Approach N22⇒ Open N22⇒ Pick up M1
from N22⇒ Approach N20⇒ Place M1 at N20⇒ Close
N20⇒ Pick up M2 from N20⇒ Close N20⇒ Approach
N22⇒ Place M2 at N22⇒ Close N22⇒ Approach
N23⇒ Open N23⇒ Pass door N23 to the wet kitchen⇒
Approach N29⇒ Open N29

Planning time = 82.6 s
Robot execution is shown in Fig. 6. The robot will enter

the kitchen and approach the fridge(N22) to obtain the
cold drink (M1). It then chooses to place it in the kitchen
cabinet(N20) due to the fact that all movable objects should
be placed at a non-movable object like the cabinet. Objects
will not be placed at non movable objects like doors as
restrictions are made. Since N20 has another canned drink
inside, the robot will transfer that to the fridge, after which
all cabinet and fridge doors are closed. The robot then pro-
ceeds to the wet kitchen to open the window N29.

Although the goals are achieved, the time it took for
planning is more than 1 min, which is considered too
long, especially in times of emergency. Therefore, meth-
ods to distribute the goals into manageable sub-goals are

required. But care should be taken as this may introduce
Sussman Anomaly. For example, if Goal 1 and 2 are sepa-
rated, the achievement of Goal 1 (bringing out M1 from
the fridge) may be undone when trying to fulfill Goal 2
separately.

Besides, knowledge base can be further exploited by
reducing as much uncertainty as possible. The use of
existential quantifiers will increase search space, thus,
slowing down the planning process. With more uncer-
tainty as to which object to deal with, use of existential
quantifiers can be reduced.

We would like to think of the intelligence of smart
home to consist of the planner (as what this paper is
about) and knowledge base (which consists of database
and inference engine). As shown in this paper, the CSP
planner is capable of performing inference to choose the
appropriate object to attend to, yet, such inference can
be made separately from the knowledge base. Therefore,
there is a gray area of who should be dealing with that.
In this paper, we are not ready to answer this question
as it depends on the full design of the smart home, but
the implication can be seen from how the goal is con-
structed as in Case 6. Given the three goals above (which
are implicit), the planner needs to perform inference to
choose the objects. But the three goals above can also be
simplified to explicit direct goals, such as:
(DYAtMOK (M1) = N20), which means canned drink

M1 should be in cabinet N20 as goal.
To have such simplified goal, knowledge base needs to

come up with direct answers of what objects to attend to.
This also means the making of choices is separated from
the planner, and other complications might ensue. If the
inference engine is run according to OWL description
logic, there is yet another issue of it taking on the open
world assumption, which requires further work to com-
bine them.

Therefore, one can use solely the planner by providing
it with well-constructed implicit goals (but may be com-
plicated), and which, may take up more planning time, or,
the knowledge base can come provide direct answers to
the choices, but risk further complications due to differ-
ent logic used.

Conclusions
Service composition provides robot with a higher level
plan of execution. Service composition for a service
robot is developed via representing and solving plan-
ner problem in terms of CSP. CSP provides a means to
define problems declaratively, and is also able to support
variables of wider domain. The few basic type of services
and their corresponding terms are optimized for faster
planning. Simulation shows that the system is able to
perform tasks bounded by complex logical rules, yet no

Page 16 of 17Tay et al. Robomech J (2016) 3:17

pre-programming is required to combine different ser-
vices as they are loosely bounded. Intelligent decision
making for object selection is embedded into the plan-
ning problem through the extended structure of the
original CSP planner [15]. The method is also standard-
ized to determine sub-locations for the sake of mobility,
and also relationships between objects as well as their
properties. This enables automatic generation of plan-
ning rules.

Currently, the system is far from perfect. Given the
number of rules imposed without restriction, planning
time will increase until it is not practical for emergency
situation. Method to distribute goal into sub-goals is cru-
cial in this respect. Besides, currently, all the constraints
imposed are hard constraints. More research need to be
done to determine the possible soft constraints that can
be utilized for service robot.

In future work, knowledge base represented accord-
ing to an appropriate building ontology should be
exploited to provide much more intelligence towards
determining the values of the terms. The addition of
Description Logic to model home situation and their

relationships can provide all necessary information to
generate conditions of the services, while at the same
time the robot will provide feedbacks back to the
knowledge base.

Authors’ contributions
NT develops the planner system and drafted the manuscript. AS implements
the robot simulator and its connection with the planner. JB is involved in
discussion of result and manuscript drafting. NK supervises the project. All
members are involved in checking and approval of the paper. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 9 January 2016 Accepted: 16 July 2016

References
	1.	 Tang D, Yusuf B, Botzheim J, Kubota N, Chan CS (2015) A novel multi-

modal communication framework using robot partner for aging popula-
tion. Expert Syst Appl 42(9):4540–4555

	2.	 Chernbumroong S, Cang S, Atkins A, Yu H (2013) Elderly activities rec-
ognition and classification for applications in assisted living. Expert Syst
Appl 40(5):1662–1674. doi:10.1016/j.eswa.2012.09.004

Fig. 6  Case 6: Complex goals The robot proceeds to the kitchen at Step 2 and goes toward the fridge(N22) to fetch a canned drink(M1) in Step 3.
It subsequently goes to the cabinet(N20) to place M1. N20 contains another canned drink(M2). The robot will fetch M2 and close N20 at the end
of Step 4. It proceeds to the fridge to place M2 and closed it in Step 5. After that, the robot approaches the wet kitchen in Step 6 and opens the
window in Step 7

http://dx.doi.org/10.1016/j.eswa.2012.09.004

Page 17 of 17Tay et al. Robomech J (2016) 3:17

	3.	 Broekens J, Heerink M, Rosendal H (2009) Assistive social robots in elderly
care: a review. Gerontechnology 8(2):94–103

	4.	 Yaguchi H, Sato K, Kojima M, Sogen K, Takaoka Y, Tsuchinaga M, Yama-
moto T, Inaba M (2014) Development of 3d viewer based teleoperation
interface for human support robot hsr. ROBOMECH J 1(1):1–12

	5.	 Domingos P, Lowd D (2009) Markov logic: an interface layer for artificial
intelligence. Syn Lect Artif Intell Machine Learn 3(1):1–155

	6.	 Klusch M, Gerber A, Schmidt M (2005). Semantic web service composi-
tion planning with OWLS-XPLAN. In: Proc of the 2005 AAAI fall sympo-
sium on semantic web and agents

	7.	 Hatzi O, Vrakas D, Bassiliades N, Anagnostopoulos D, Vlahavas I (2010)
Semantic awareness in automated web service composition through
planning. Lect Notes Comput Sci 6040:123–132

	8.	 Hatzi O, Vrakas D, Nikolaidou M, Bassiliades N, Anagnostopoulos D,
Vlahavas L (2012) An integrated approach to automated semantic
web service composition through planning. IEEE Trans Serv Comput
5(3):319–332

	9.	 Georgievski I, Aiello M (2014) An overview of hierarchical task network
planning

	10.	 Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) HTN planning for web
service composition using SHOP2. Web Semantics Sci, Serv Agent WWW
1(4):377–396

	11.	 Au TC, Kuter U, Nau D (2005) Web service composition with volatile
information. In: Gil Y, Motta E, Benjamins VR (eds) The semantic web ISWC
2005. Lecture notes computer science. Springer-Verlag, Heidelberg, pp
52–66

	12.	 Yang F, Khandelwal P, Leonetti M, Stone P (2014) Planning in answer set
programming while learning action costs for mobile robots. In: AAAI
Spring 2014 symposium on knowledge representation and reasoning in
robotics (AAAI-SSS)

	13.	 Zhang S, Sridharan M, Wyatt JL (2015) Mixed logical inference and
probabilistic planning for robots in unreliable worlds. IEEE Trans Robot
31(3):699–713

	14.	 Kaldeli E, Warriach EU, Bresser J, Lazovik A, Aiello M (2010) Interoperation,
composition and simulation of services at home. In: Maglio P, Weske M,
Yang J, Fantinato M (eds) Service-oriented computing. Lecture notes in
computer science. Springer-Verlag, Heidelberg, pp 167–181

	15.	 Kaldeli E, Warriach EU, Lazovik A, Aiello M (2013) Coordinating the web of
services for a smart home. ACM Trans Web 7(2):10–11040

	16.	 Kaldeli E, Lazovik A, Aiello M (2011) Continual planning with sensing for
web service composition. In: Proc of 25th AAAI conference on artificial
intelligence

	17.	 Helmert M (2009) Concise finite-domain representations for PDDL plan-
ning tasks. Artif Intell 173(5):503–535

	18.	 Richter S, Westphal M (2010) The LAMA planner: guiding cost-based
anytime planning with landmarks. J Artif Intell Res 39(1):127–177

	19.	 Hoffmann J, Weber I, Kraft F (2010) Sap speaks PDDL. In: 24th national
conference of the American Association for artificial intelligence

	20.	 Han SN, Lee GM, Crespi N (2014) Semantic context-aware service
composition for building automation system. IEEE Trans Indus Inform
10(1):752–761

	21.	 Allemang D, Hendler J (2011) Semantic web for the working ontologist:
effective modeling in RDFS and OWL. Morgan Kaufmann Publishers,
Burlington

	22.	 Rao J, Küngas P, Matskin M (2006) Composition of semantic web services
using linear logic theorem proving. Inform Syst 31(4):340–360

	23.	 De Moura L, BjØrner N (2008) Z3: An efficient SMT solver. In: International
conference on tools and algorithms for the construction and analysis of
systems. pp. 337–340

	Service robot planning via solving constraint satisfaction problem
	Abstract
	Background
	Methods
	Planner module
	General domain description
	Planning as constraint satisfaction problem
	Design of terms
	Design of services

	Results and discussion
	House setup
	Speed comparison on different service design
	Summary of cases
	Case 1: Simple object fetch for human
	Case 2: Dynamic planning under uncertain situation
	Case 3: Inferences for making choices
	Case 4: Reasoning and planning with numbers
	Case 5: Reusability of activities
	Case 6: Complex goals

	Conclusions
	Authors’ contributions
	References

