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Abstract 

The problem of demographic shifts towards the elderly is deteriorating, as the relative number of caregivers is insuf-
ficient to provide the support required for their wellbeing, which is further aggravated by the increasingly hectic life-
style. Service robot is getting more prominent as a possible solution. Robot manipulation and mobility is an important 
field, but they also require high level planning for these minute actions in order to provide ample support. Automatic 
service composition, contributed significantly by web services, offers the necessary technology for the task. Robot 
planning problem can be solved by representing it as constraint satisfaction problem (CSP) due to it being able to 
support loose binding of services and variables of wider domain. This paper further extends the structure of the CSP 
planner to enable intelligent decision-making. Besides, standardization is made on the properties and relationships 
of objects such that planning rules can be easily generated from knowledge base. Services and their corresponding 
terms are designed for efficient planning. Case studies show that the system is able to perform tasks bounded by 
complex logical rules. It also provides valuable insights into future enhancements and research.
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Background
The fraction of the elderly on the population pie is 
increasing at an alarming level for developed countries. 
It is estimated that the population of those above 60 
years old in the world will double to 2 billion in the year 
2050 [1]. The problem of demographic shifts towards the 
elderly is particularly serious in Japan [2, 3], as the rela-
tive number of caregivers is insufficient to provide the 
support required for their wellbeing. The issue is further 
aggravated by the increasingly hectic lifestyle.

Smart homes and ad-hoc home automations are on 
the rise to provide support for the elderly. Despite that, 
installation and integration of the system requires tech-
nical knowledge. Besides, large variety of vendors and 
standards brings more confusion instead of peace to the 
elderly. We by no means say that smart home and home 
automation fail to deliver. In fact, they are necessary in 
the near future to provide the required assistance. At the 
current stage, it is more appropriate to devise a physical 

agent that can dispense service at a home yet to be sup-
ported or supported minimally by smart devices, and, at 
the same time, allowing the evolution of the home to take 
place to become a more autonomous environment. This 
agent, or we shall call, service robot, should provide secu-
rity, assistance, communication and companionship to its 
human occupants.

Various service robots have been developed over the 
years. An example is the Human Service Robot (HSR) 
developed by Toyota [4]. Robot manipulation and mobil-
ity is an important field for service robot. These are low 
level actions, where they require high level activity plan-
ning in order to perform complex tasks. Service planning 
is able to provide them with the high level overview of 
how their minute actions will be carried out overtime.

Different approaches are used for service planning. 
Service composition is initially applied to create compos-
ite services for various complex business requirements. 
Services can be considered the building blocks of what an 
agent can undertake at a certain time. To fulfill a goal, the 
agent should execute a sequence of services. Overtime, 
the idea is adopted by ubiquitous, pervasive computing 
and robotic. In order to support service composition, 
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services come with semantic markups that describe their 
functionalities, properties and conditions (pre and post 
conditions of the service). With the semantic markup, it 
is much more convenient to plan, reason and monitor 
services, instead of relying on detailed descriptions of 
the functions. It endows them with capabilities of being a 
planning operator.

In the field of robotics, Markov decision process 
(MDP) is a popular approach for robot motion planning. 
The downside of this approach is that it lacks the com-
plexity required for service composition, which can be 
delivered by logic-based approach [5]. The fact that MDP 
is a statistical method gives them an edge in this respect 
in dealing with uncertainty over logic-based approach. 
Therefore, both statistical and logical approach can be 
considered tackling different scope of the same problem. 
In this paper, we will concentrate on the service com-
position performed by automated reasoning. It handles 
the broad service composition such that it also provides 
room for statistical or other specialized methods to figure 
out the minute details.

In [6], OWLS-Xplan uses the semantic descriptions of 
services defined in OWL-S for planning purposes. The 
XPlan planning module will then generate the compos-
ite services. In this work, an XML dialect of planning 
domain definition language (PDDL) is developed. This 
makes the system PDDL compliant. Although the system 
obtains semantic descriptions in OWL-S, it is not utilized 
and semantic awareness is not achieved. In this case, the 
planning module is required to perform exact matching 
for service inputs and outputs.

In [7, 8] a framework was developed that converts ser-
vice composition tasks into planning problems expressed 
in PDDL. The framework will then convert the devised 
plan into an OWL-S composite process description. The 
framework translates atomic OWL-S processes to plan-
ning operators. Goals are achieved through assembling 
these generated planning operators. When no exact com-
posite services can be found, semantic information is uti-
lized to obtain composite services that best approximate 
the goal.

To deal with complex tasks and to reduce planning 
complexity, Hierarchical Task Network (HTN) [9] is 
introduced. It uses method definitions in its planning 
domain description, which specifies how the complex 
tasks can be broken down into more manageable tasks 
[10, 11]. The planning problem can then be specified as 
a list of tasks to perform. The planner will then solve the 
problem by applying the breaking down of tasks to every 
task in the task list. This process continues until the tasks 
are reduced to their atomic planning operator constitu-
ents that corresponds to a solution plan. The advantage 
is its speed. In spite of that, the disadvantage is that the 

planning process requires certain decomposition rules be 
specified due to its hierarchical nature. This means that it 
needs to be encoded in advance by an expert.

Answer set programming (ASP) is another popular 
approach used for planning [12, 13]. It is a declarative 
language that is suitable for knowledge representation 
and non-monotonic reasoning. [12] integrated ASP with 
cost learning to improve the performance of the planner 
for robot planning, while [13] combines with MDP to 
endow it with the capability to handle uncertainty. At the 
moment, for complex sequence of services, these meth-
ods require heavy computational load and long planning 
time.

The methods discussed thus far require exact match 
ups between inputs, outputs and variables, or that it 
assumes certain ontologies to handle heterogeneities, 
or requires specifications of user anticipation and pro-
cedural templates. Domain and goal modeling through 
constraint satisfaction problem (CSP) is developed to 
create a language that allows users to express goals with-
out having to know about the details and interdependen-
cies between services [14–16]. Its domain representation 
is of similar concept with the multi-valued planning task 
(MPT) encoding [17]. Besides, another advantage is that 
it is able to handle variables with large domain efficiently, 
which is quite prevalent in the field of autonomous home 
such as temperature value and user location. Although 
the CSP planner might be slower than some state of the 
art methods [11, 18, 19], it can support complex goals 
and can handle variables with large domain efficiently. 
It has been applied to robot planning [15]. But the CSP 
planner proposed does not show intelligence in making 
choices as argued in [20]. Besides, no standardization is 
made to function/predicate construction and domain 
specification, which prevents automatic generation of 
rules.

In this paper, robot planning problem is represented as 
CSP, where sequence of plans is generated for the robot 
to execute to fulfill goals. Through this approach, robot 
individual services become loosely coupled, thus, ena-
bling more flexibility and enhancing reusability in service 
design. Flexibility is achieved in the sense that the design 
of services does not need to take into account the details 
and functionalities of other services - they only need to 
know the preconditions before and effects of the states 
after service execution, where it is up to the CSP planner 
to arrange them to obtain desirable plans to fulfill goals. 
Being reusable means the services can be applied to dif-
ferent applications without having to manually redefine 
rules pertaining planning, as in the redefinition of sub-
goals from HTN methods. Besides, constraint program-
ming supports variable of larger domain more efficiently, 
which allows natural processing of constraints involving 
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values such as integers and large finite domain data 
types. In this case, goals and rules involving numbers (for 
example, air conditioner need to be switched on if tem-
perature rise above certain value) can be combined with 
robot activity planner under one umbrella of declarative 
language.

This paper further extends the CSP planning structure 
proposed in [15] to support making choices of different 
objects as part of planning process, by endowing dynamic 
response variables in functions and predicates with finite 
domain data types. Besides, standardization is made in 
determining sub-locations for robot mobility as well as 
function and predicate specifications relevant to objects 
of the house, where all these can be easily generated auto-
matically from knowledge base inference (for example, 
generating relevant objects and their classes to be filled 
into planning functions and predicates from SPARQL 
query or making inference through OWL description 
logic from home knowledge base. Interested readers can 
refer to ontology building from [21]). Original work in 
[15] does not provide such specifications (such as how 
sub-locations should be defined) and grounds the func-
tions and predicates (such as the grounded terms for beer 
and its property). One may argue that all functions and 
predicates can ultimately be grounded, but this comes 
at a price of (1) understandability and (2) CSP planning 
optimization. Grounded terms are harder to interpret, 
at least during development stage, and thus, compro-
mise understandability, where information transfer from 
knowledge base is less intuitive. Grounded terms may 
impose additional constraints on CSP based planner and 
additional difficulty for optimization. As CSP solver can 
be built to specialize in planning tasks, it does not need 
grounded terms as in Boolean Satisfiability and may even 
exploit functional forms for faster heuristic search as well 
as supporting weighted CSP, which is subject of future 
work. This paper provides a much more complicated 
home environment case, yet at the same time, employ-
ing standardized approach in service design that can 
be easily generated automatically and applied to other 
environments.

Methods
Planning and execution of plans (termed orchestrator) 
are performed by a single mobile robot. The plans involve 
high level plans like where the robot should go to, open-
ing doors, picking up certain objects and so on. It does 
not involve minute details such as how the robot should 
open doors through the coordination of servos and visual 
input. In this work, when a robot is expected to execute 
a plan, the robot is already in an environment that is 
conducive or possible to execute such plans. The plan-
ner and the orchestrator will execute a sequence of plans 

to prepare such an environment. For example, when the 
robot needs to switch on a light, the planner will first 
tell the robot to go near the corresponding switch before 
switching it on with its manipulators.

For this work, a few basic movements of the robot are 
assumed, which are, mobility, tuning up/down, opening 
and closing, switching on and off, picking and putting 
objects. It is assumed that the robot can hold some-
thing while performing open/close and tuning up/down 
actions. Planning and execution will revolve around 
these basic movements to achieve certain goals. Planner 
module is responsible for the planning and passing com-
mands to the robot for its execution. Given a certain goal, 
planner module will compose a sequence of plans for the 
robot to execute such that after the plans are completed, 
the goal is achieved. For example, given that the goal 
is to place a canned soft drink in the fridge and that all 
cabinet needs to be closed, the robot will first find where 
the soft drink is. If there is one that happens to be in the 
kitchen cabinet, the robot will approach it, open the cabi-
net and pick up the soft drink, and then close it. It will 
subsequently approach and open the fridge, after which 
it will place the canned drink before closing it. No prior 
programming is required for the plan.

This work emphasizes on generating plans, thus, time 
to achieve this is assumed to be acceptable. It is also 
assumed that the syntactic statement used by the planner 
for the planning problem describes the actual environ-
ment. Therefore, failure or success of robot in achiev-
ing its task is reflected in the environment of planning 
problem.

Planner module
Figure 1 shows the flow chart of the planning and execu-
tion process. Three important components of the planner 
module are the variables, services and goals. Variables 
record the current state of robot and the environment. 
Services are activities that the robot can perform, which 
have preconditions and effects. Precondition contain a 
list of conditions that need to be fulfilled by the variables 
before the plan can be executed, whereas effect is the 
changes that will occur after the service is implemented. 
The goal is the final condition that needs to be met by the 
variables. Planner module consists of a planner and an 
orchestrator. Planner will compose a sequence of plans 
according to current variable state. If a solution is found 
by the planner, the plan will be passed on to the orches-
trator to execute the plan. Orchestrator’s role is to pass 
commands to the robot to execute the plans accordingly.

Given the available variables, services and goals, the 
planner will compose a sequence of plans such that, after 
implementation, the goal will be fulfilled. The sequence 
of plans can be likened to theorem proving [22]. Every 
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subsequent plans will have their preconditions met, and 
will impose changes for the next plan to drive the vari-
ables to what is required by the goal.

The following is an explanation of the flow chart in 
Fig. 1. When the program starts, the state will be at state 
-1 (note that the use of the word ’State’ here is only for 
explanation in Fig. 1. State -1 only occurs once when the 
program starts. During this state, start-up booting will 
occur as well as extracting crucial information from the 
knowledge base. The first goal is also obtained at this 
stage. Planning will occur to devise a sequence of plans 
to fulfill the goal. If a solution is found, the program will 
proceed to state 1. Otherwise, it will go to state 4, signify-
ing a failure in finding solution. The purpose of state 1 is 
to obtain the next service in the plan for execution, after 
which will be executed at state 2. State 2 implements as 
the orchestrator. It first checks whether preconditions 
of the current activity are met or not. If not, the pro-
gram will proceed to state 0, or else, the service will be 

executed and returns to state 1 to pick up the next ser-
vice. State 0 resembles state -1, just that it doesn’t require 
start up phase. The transition from state 2 to state 0 ena-
bles dynamic planning. This is important to deal with 
uncertain situation, where variables cannot be confirmed 
except during run-time. In this case, re-planning can 
occur at state 0 if expectation is wrong. After plan exe-
cution, state 3 will re-check whether the goal is fulfilled, 
upon which is yes, it will proceed to state 5. If the goal 
cannot be achieved, the program will proceed to state 
4. The final state is state 6 which records a log for future 
reference or learning. The program will restart at state 0 
after selecting the next goal.

General domain description
Domain description will be based on the work of [15]. 
We denote ϑ = term set (list of variables). ϑ contains V 
terms, which consists of knowledge, effect, dynamic 
response and static response terms confined by their 

Fig. 1  Planning and execution flow. When the program starts, the state is -1. Given the goal, the state will change to 1 if solution is found, 4 other-
wise. Execution is done through state 1 to state 3. When the plan execution is finished, the state will proceed to state 5 and 6, upon which new goal 
will be obtained for subsequent planning
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own domain. Term can be a variable, constant or func-
tion. Response terms represent information that can 
only be obtained from objects, information that comes 
from sources not within ϑ. During planning stage, static 
response terms remain the same throughout all planning 
sequence and represent an unknown value (thus, initiali-
zation constraint is imposed on them), whereas dynamic 
response can change for every sequence. They can take 
on whatever value to facilitate constraint satisfaction 
during planning that employs an optimistic approach 
(value taken on by response terms are considered true). 
Dynamic response terms can also be determined or hav-
ing their domain constrained by current, past or future 
variables via the use of rules (In this work, only past 
and current variables are considered). Response term 
usage will be made more evident in subsequent sections. 
Knowledge terms record information for future refer-
ence. Effect terms are used for external control.

A state is a tuple of values to terms at a particular plan 
implementation sequence index t that is denoted as 
Xt = (X1

t ,X
2
t ...X

V
t ) where X1

t ,X
2
t ...X

V
t ∈ ϑt, confined by 

their domains denoted by D1,D2...DV . As there is a finite 
limit to the number of sequence per plan being planned 
denoted as K, thus, 0 ≤ t < K . For the current work, 
domains of the variables of the terms remain unchanged 
over time.
α is the set of activities, where a = (id(a), 

precond(a), effect(a)) ∈ α. id(a) is the identifier of the 
activity. There is an additional activity in α that does 
nothing. It has no pre-conditions and effects, termed as 
Nop.
precond(a) is the pre-condition that need to be met 

before the activity can be executed, such as the robot 
needs to near the cabinet before attempting to open it. 
Precondition of an activity can be described as follows:

where var ∈ ϑ, val is a constant, ⊙ ∈ {+,−} is a binary 
operator, • ∈ {=,<,>, �=,≤,≥} is a relational operator, 
and nPred is an n-ary predicate.
effect(a) is the changes that will be induced after 

the activity is completed. It emulates the state transi-
tion given the activity a, such that its logical formula-
tion can be used to impose constraints on subsequent 
sequence of the plan for activity planning. It should be 
emphasized that the actual object manipulates variables 
during run-time after planning instead of the effect(a) 

(1)

precond(a) ::= prop|precond(a) ∧ precond(a)|precond(a)

∨precond(a)|¬precond(a)|precond(a)

→ precond(a)

(2)
prop ::= var • var|var • val|(var ⊙ var)

• var|(var ⊙ var) • val|nPred

formulation (which is only used for planning). Effect of 
an activity can be formulated as or a combination of the 
following: vart+1 = val, vart+1 = vart, vart+1 = f (v1, v2) 
where v1, v2 ∈ ϑt or v1, v2 are constants, and f is the sum, 
subtraction and Boolean operation.

For simplification, when necessary, we will denote the 
above relations as vart+1 = effectst(a). This relation is 
read differently between the planner and the orchestra-
tor. During planning, vart+1 = effectst(a) means the truth 
statement that: (effectst(a) includes an effect towards the 
variable var) implies (vart+1 = effectst(a)) holds true.

On the contrary, for orchestrator, it is seen as 
vart+1 := effectst(a), which indicates that the term var 
is being modified according to effectst(a). Therefore, 
depending on whether planner or orchestrator is referred 
to, the correct interpretation has to be made. There is 
no arrow of time for planner, thus, the relation is seen as 
equality. For orchestrator, it is seen as an assignment.

Though this work only use the specified effects, more 
sophisticated effects, such as conditional effects, can 
be used as shown in [15]. That said, the extension to 
previous work [15] is shown in Fig.  2, indicated by the 
red bounding box. The extension is the use of dynamic 
response terms and the rules for their transition. This 
extension enables inference capabilities and the ability to 
make choices to be realized as part of planning process. 
As dynamic response terms and their corresponding 
rules are dependent on the activity the robot is perform-
ing, detailed explanation will be given in “Design of ser-
vices” section.

Planning as constraint satisfaction problem
Given goals, which are represented as propositions, activ-
ity planning can be obtained to fulfill the goal by repre-
senting the problem as CSP and solve it. A CSP is a triple 
CSP = �χ ,D, ζ �, where χ is a set of terms, D is the set of 
domains of the variables of the terms in χ, and ζ is a set of 
constraints over χ. A solution to a CSP is an assignment 
of values to the terms in χ such that the values fall within 
D and all constraints in ζ are satisfied. In this work, D is 
unchanged throughout the activity sequence. It is consid-
ered determined when a goal is passed to the planning 
process flow in Fig. 1, and will stay that way until the goal 
is achieved.

In terms of the ISS planner, χ = {X1,X2...XK }∪

{A1,A2...AK−1} ∪ R, R is a set of response terms, and At 
is the chosen goal at sequence index t. Unlike X and A, 
variables in R remain the same throughout the planning 
sequence.
ζ consists of constraints imposed by a chosen activity at 

t from activity pre-conditions and effects, inertia law, ini-
tial and final variable state and maintenance of achieved 
goal constraints. Initial variable state is just a constraint 
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that dictates the values of all variables (obtained from 
object state module) before any planning. Final state con-
straint consists of the goal proposition that needs to hold 
at sequence index K.

Constraints from activity pre-conditions:
(At = a) → precond(a) where ∀a ∈ α

Constraints from activity effects:
(At = a) → [(vart+1 = effectst(a)) ∧ Fr] where ∀a ∈ α

where Fr is the inertia law constraint, which indicates 
that for every other variables var (excluding those from 
R) not affected by effectst(a), vart+1 = vart.

Maintenance of achieved goal constraint:

This constraint dictates that whenever a goal is 
achieved at sequence index t̄ < K :
At = Nop where t̄ < t < (K − 1)

Maintenance of achieved goal constraint is just one of 
the goals specified in [15], though it is sufficient for the 
current work.

Constraints are fed to a solver to obtain a sequence of 
A, which are the activities that need to be implemented 
to fulfill the given goals. Z3, which is a state of the art 
SMT solver, is used to obtain the plan [23]. The plan 
will be solved by continually increasing K until the con-
straints are satisfied.

Fig. 2  Constraint graph used for robot planning. Although there is no explicit definition of time in CSP planning, the arrows show the flow of plan. 
The red bounding box shows the extension of this work from that of [15], which consists of dynamic response variable and rules that dictates the 
values of subsequent dynamic response variables
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Design of terms
The robot in this work is intended to fetch and place 
objects, as well as opening/closing and switching on/off 
switches. It needs to be able to move around to enable 
it to perform the tasks. There are three types of objects, 
which are, movable objects, non-movable objects and 
location.

Movable objects consist of objects that can be moved 
around by the robot like towel and cans. Non-movable 
objects are objects that are fixed, but they may be able 
to be operated by the robot. Examples of non-mova-
ble objects are bed, doors, cabinet and switches. The 
robot itself is also considered a non-movable object for 
convenience during planning which will be shown later 
on. Human is also considered a non-movable object 
as the assumption is that the human remain station-
ary during planning. If the human moves, due to the 
ability to re-plan as discussed previously, the issue can 
be easily solved. Location object consists of regions 
on the home such as the living room, bedroom and 
kitchen.

Apart from integer and boolean datatype, five new data 
types are introduced to support the mentioned objects, 
namely, NOType, MOType, Location, NOStateType, 
MOStateType, NOID and MOID. NOType defines the 
type (ex: cabinet, door, switch) of non-movable object 
with ID defined in data type NOID. Likewise, MOType 
defines the type (towel, paper, cup) of movable object 
with ID defined in data type MOID. Location is the data-
type of location.MOStateType and NOStateType are the 
datatype that defines the state of a movable and non-
movable object respectively.

There are two static functions (functions where the 
output values remain the same throughout all planning 
sequence), which are, FNOType : NOID → NOType and  
FMOType : MOID → MOType. A constant is HumanLocation, 
and a static predicate is NOLocation(NOID, Location).
FNOType maps a particular non-movable object to its 

type (For example, mapping an object as a door). Like 
wise, the same applies to FMOType, but that it applies to 
movable object. The predicate NOLocation(a,  b) states 
the truth value whether a non-movable object a is in 
location b. This is especially important for objects like 
doors. HumanLocation stores where the human is at in 
datatype Location

The subsequent terms explained in this subsection 
can have their values changed in the course of planning 
sequence. This means, given a term A, for a plan with K 
sequence, there will be A× K  number of variable A, each 
for every sequence, where each has a unique definition 
A1,A2...AK .

The function DYStateNOt :NOID → NOStateType 
outputs the state of the non-movable object. 

DYStateNOt(a) = b states that a is in a 
state of b at sequence t. The same applies to 
DYStateNOt :MOID → MOStateType, which is for mov-
able objects.

The function DYTunet :NOID → Int outputs the 
numerical value (in integer Int type) associated with the 
non-movable object at sequence t.

As movable objects will always be placed at a non-mov-
able object (ex: cup on a table, book with a human), the 
function DYAtMOt :MOID → NOID maps a movable 
object to a non-movable object it is placed at.

Three variables are included, namely, RobotLocationt , 
RobotApproacht and RobotHoldt. RobotLocationt stores 
the location of the robot (with datatype Location) at 
sequence t. RobotApproacht records the non-movable 
object the robot is approaching. RobotHoldt is a boolean 
variable determining whether the robot is holding some-
thing or not.

For proper functionality, three dynamic response vari-
ables are introduced, which are, Approachrest, MOIDrest 
and RobotHoldrest. The role of these dynamic response 
variables will be made more evident during the discus-
sion of the services.

Design of services
This subsection describes, but not limited to, three types 
of services the robot is expected to perform. Although 
only three types are listed, more services can be included 
depending on the application. The four types are open/
closing service, tuning up/down service, mobility, and 
put/pick service.

Open/closing service consists of two services, which 
are opening and closing. These two services applies to 
opening/closing of doors and switching on/off switches.

It has a precondition:
NOLocation(RobotApproacht ,RobotLocationt) = true

and effect:
DYStateNOt+1(RobotApproacht): = Open/Close respectively

The precondition has to make sure the robot is 
approaching object stored in RobotApproacht and that 
the robot is in location RobotLocation, before it can 
open/close the non-movable object by manipulating 
DYStateNO at sequence t + 1.

Tuning up/down service deals with numerical manipu-
lation that consists of (1) tuning up (increasing by 1), and 
(2) tuning down (decreasing by 1).

It has a precondition:
NOLocation(RobotApproacht ,RobotLocationt) = true

and effect:

 respectively
Put/Pick service consists of robot fetching and placing 

a movable object.

DYTunet+1(RobotApproacht ): = DYTunet (RobotApproacht )+/−1
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The preconditions for picking up objects are:
DYStateNOt(RobotApproacht) = Open

DYAtMOt(MOIDrest) = RobotApproacht
NOLocation(RobotApproacht ,RobotLocationt) = true

RobotHoldt = false

and effects:
DYAtMOt+1(MOIDrest): = NRobot

RobotHoldt+1: = true

The preconditions make sure that the movable 
object the robot is trying to fetch is located in a non-
movable object with state Open through the predi-
cate DYStateNOt(RobotApproacht),and that the 
robot is not holding anything via RobotHoldt = false.  
They also make sure the object the robot is trying to 
fetch (MOIDrest ) is located in non-movable object 
RobotApproacht. MOIDrest is a dynamic response vari-
able, where its value is freely determined by the plan-
ner to aid optimistic planning which is inherent in 
planning via solving CSP. If the preconditions are met, 
the robot can pick object MOIDrest through setting 
DYAtMOt+1(MOIDrest) to NRobot, where NRobot is the 
non-movable object ID under datatype NOID for the 
robot. RobotHold is set to true to indicate that the robot 
is holding something.

The preconditions for putting objects are:
DYStateNOt(RobotApproacht) = Open

DYAtMOt(RobotHoldrest) = NRobot

NOLocation(RobotApproacht ,RobotLocationt) = true

RobotHoldt = true

and effects:
DYAtMOt+1(RobotHoldrest): = RobotApproacht
RobotHoldt+1: = false

For putting objects, the preconditions also specify that 
the intended non-movable object be opened. It requires 
the robot to hold movable object RobotHoldrest , which 
is indicated by having NRobot as the output for func-
tion DYAtMOt. Just like MOIDrest, RobotHoldrest is 
a dynamic response variable that stores the current 
object the robot is holding. RobotHoldt = true is the 
constraint where the robot is holding something. With 
the preconditions met, RobotHoldrest will be placed at 
RobotApproacht through DYAtMOt+1.

Mobility service consists of two services, that is, move-
ment within a room, and movement between rooms.

Movement within a room has the following precondition:
NOLocation(Approachrest ,RobotLocationt) = true

and effect:
RobotApproacht+1: = Approachrest
The robot will always be going towards a non-movable 

object, as it is practically meaningless to go towards noth-
ing. Therefore, the precondition makes sure that a non-
movable object the robot is going to is within the current 

room, where the dynamic response variable Approachrest 
stores the object the robot is approaching.

Movement between rooms is required for every doors. 
One can write a precondition as the following:

This precondition with existential quantifier takes a 
longer time to plan from preliminary test. Another alter-
native is to build a service for every doors. The precondi-
tion is shown as follows:
DYStateNOt(V 1) = true

RobotLocationt = V 2

and effects:
RobotLocationt+1: = V 2

Services with above mentioned preconditions and 
effects are built for every door and for every side. It 
means that if there are two doors altogether, there are a 
total of four such services, where each door takes up two 
for the robot to move through the door in both direc-
tions. From the preconditions and effects, V1 is the door 
object ID and V2 is the location the robot goes to after 
passing the door.

Results and discussion
This section presents the case study of the planner for 
robot service execution. The intention is to show the 
applicability of the approach, while at the same time, pro-
vides insights into future developments.

Case study will show how the robot, given the standard 
activities (mobility, open/close and pick/put), can fulfill 
goals that can provide support for its human inhabitants. 
It is done through simulation built via open dynamics 
engine (ODE). Orchestrator from the planning module 
constantly communicates with the robot. It sends service 
instructions one at a time for the robot to execute, while 
the robot will respond given every executed service. The 
study is run on 2.5 GHz Intel Core i5 computer.

House setup
Case study is performed on a simulated home via ODE. 
Fig. 3 shows the layout of the house. It contains 36 non-
movable objects (excluding human and the robot), 7 
movable objects, 10 locations, and 10 doors. The num-
bers in white shown in the figure are the non-movable 
object IDs.

Out of the all the non-movable object, the bed (ID 1) 
and table (ID 34) cannot be manipulated. Doors, win-
dows, fridge, cabinets and washing machine can be 

∃z(NOLocation(z,RobotLocationt) ∧ NOLocation(z, rest)

∧ (rest �= RobotLocationt)∧

DYStateNOt(RobotApproacht) ∧ (RobotApproacht = z)

∧ (FNOType(z) = Door))
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opened/closed. Apart from doors, all non-movable 
objects only have one associated location (indicated by 
predicate NOLocation). Of all the non-movable objects, 
only N37 is associated with DYTune, as N37 is consid-
ered a volume control for the living room fan. The loca-
tions are, Master bedroom, Living room, Kitchen, Wet 
Kitchen, WC1, WC2, Bed room 2, Bed room 3, Car Porch 
and the Garden.

Numbers preceded by ’subloc’ are sublocations for the 
objects. Since the robot need to be near enough to an 
object before it can manage it, the sublocations provide 
such spots. Sublocations are not included in the plan-
ning, but their information with their corresponding 
non-movable objects are stored in the knowledge base 
such that they can be used during execution. This infor-
mation is crucial during path planning. For this work, 
due to the simple grid-like layout, Floyd-Warshall algo-
rithm is used for path planning.

Details of the movable objects are shown in Table  1, 
which shows their type and which non-movable objects 
they are placed at. Information for these movable objects 
are also extracted from knowledge base of the home. For 
faster planning, one can limit the information to only 
deal with the objects required.

For clarity, all IDs for non-movable object will be pre-
ceded by a capitalized N, and all movable object will be 
preceded by M during the case studies. For example, the 
door with ID 6 will be identified as N6, while the towel 
with ID 5 in the washing machine N31 will be identified 
by M5.

Speed comparison on different service design
Service design will have significant effect on how search 
is performed to obtain solution. In this section, test is 
performed to select whether to utilize a general service 
that covers wide number of objects, or to duplicate the 

Fig. 3  House layout. The house layout used for robot planning simulation. Blue parts are switches, red lines are windows, orange parts are cabinets, 
Purple part is a fridge, green part is the table, pink part is the bed and brown part is the washing machine. The shapes with swinging curves are doors
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services to handle these objects individually. Although 
speed is not the main focus of this paper, but optimiza-
tion is required to make it general enough to cover wide 
range of applications without specialized tweaking yet 
fast enough for most environments.

That said, we will concentrate on two types of services, 
that is, moving between locations (S1) and opening/
closing (S2) services. Both of these service types cov-
ers a wide range of objects, thus is important to select 
the optimal approach to implement them to obtain the 
best speed. We denote type A test as general service for 
S1 and S2, type B test as general S1 and duplicated S2, 
and finally type C test as duplicated S1 and general S2. 
For clarity, explicit command means the goal is explicitly 
specified (ex: moving object A to B), while implicit com-
mand means the goal is implied (ex: move any object 
with property N out of D). Type A contains 6 services, 
type B contains 25 services and type C has 91 services. 
Table 2 shows the test result on the speed of planning for 
all three types of services.

It can be observed that type B (general S1 and dupli-
cated S2) achieves the best result most of the time. Type 
A is the slowest most of the time despite it having only 6 
services to choose and search from, which shows gener-
ality comes at a price on speed. Type C, having the most 
services at 91, beats type A in planning speed. Despite 
that, its performance is insignificant compared to type B, 
due to its high number of duplicated services. Therefore, 
the subsequent case studies will utilize type B as design 

approach for the services. Table 3 shows the details of all 
type B services.

Summary of cases
This section briefly describes the six case studies used to 
demonstrate the capabilities of the planning system.

Case 1: “Simple object fetch for human” is used as a 
starting example on fulfilling an explicit goal of robot 
fetching a book for its human master. It is also used to 
show a difference between implicit and explicit goal.
Case 2: “Dynamic planning under uncertain situation” 
shows how the planner deals with uncertain situa-
tion that causes inconsistencies. Uncertain situation 
may cause information that is crucial for planning to 
change without a prior update on the planner’s knowl-
edge. This case demonstrates dynamic re-planning to 
tackle such issues.
Case 3: “Inferences for making choices” demonstrates 
more clearly (compared to Case 1) the use of implicit 
goals for the planner to make choices based on the 
properties of objects, which is also an extended capa-
bility from previous work [15].
Case 4: “Reasoning and planning with numbers” dem-
onstrates how the CSP planner treats numerical rea-
soning and manipulation as part of the planning pro-
cess.
Case 5: “Reusability of activities” shows how the robot 
activities can easily co-operate with the activity of 
other smart devices installed in the smart home. It 
reuses the activity definition of the smart device with-
out having to make further manipulations.
Case 6: “Complex goals” shows planning under more 
complex implicit goals and its implications in time and 
enhancements.

Case 1: Simple object fetch for human
A service robot need to be able to approach human as 
well as fetching objects or them or picking or putting 
objects according to command, without the user hav-
ing to dealt into too much detail of how it is done. This 

Table 1  Movable object details

Object ID MOType NOID

1 Canned drink 22

2 Canned drink 20

3 Canned drink 12

4 Paper 34

5 Towel 3

6 Towel 31

7 Book 11

Table 2  Test on Different Service Design

Test no. Description of the goal Command Steps A (sec) B (sec) C (sec)

1 Approach N1 Explicit 4 0.431 0.219 0.294

2 Open all windows in master bedroom Implicit 7 1.357 0.938 1.346

3 Move M2 to N20 (same location) Explicit 9 2.27 1.03 1.76

4 Move any canned drink to M34 Implicit 9 3.36 2.74 5.21

5 Move M5 to N31 (different location) Explicit 13 18.36 14.94 11.36

6 Switch on N10, N12, N14, N28 Explicit 22 655.40 272.67 609.35
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case study on object fetch showcases how the robot is 
able to find the book (from knowledge of the knowledge 
base) and deliver it to the user, who is in the bedroom. 
This case covers the aforementioned requirements of the 
robot.

Case 1 assumes simple goals:
DYAtMOK (M7) = NHuman

∀z((FNOType(z) = Cabinet) → ¬DYStateNOk(z))

where the first goal states that the book with ID M7 will 
be given to the human, and the second goal requires all 
cabinet to be closed at the end of the plan. The robot ini-
tial location is at non-movable object N17.

The following shows the planning:
Case 1

Approach N6⇒ Open N6⇒ Approach N11⇒ Open 
N11⇒ Pick up M7 from N11⇒ Close N11⇒ Pass Door 
N6 to MasterBedroom⇒ Approach NHuman⇒ Place M7

Planning time= 1.335 seconds
Figure  4 shows the robot’s plan execution. Given the 

generated plan, the robot will first approach the door N6 
to open it. It will then go to cabinet N11 to pick up the 
book M7. After that, the robot move to the bedroom to 
deliver the book to the human. A peculiarity that occurs 
is the fact that the robot opens door N6 first, and then 
returns to Cabinet N11, before going back to N6 to 
enter the Master bedroom. This is because the planner 
doesn’t know about the cost of paths. It only judge the 

Table 3  Service preconditions and effects

No. Precondition Effect

1 NOLocation(RobotApproacht , RobotLocationt) DYStateNOt+1(RobotApproacht): = true

2 NOLocation(RobotApproacht , RobotLocationt) DYStateNOt+1(RobotApproacht): = false

3 NOLocation(Approachrest , RobotLocationt) RobotApproacht+1: = Approachrest

4 DYStateNOt(N6) ∧ RobotLocationt = MasterBedroom RobotLocationt+1: = LivingRoom

5 DYStateNOt(N6) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = MasterBedroom

6 DYStateNOt(N5) ∧ RobotLocationt = MasterBedroom RobotLocationt+1: = WC1

7 DYStateNOt(N6) ∧ RobotLocationt = WC1 RobotLocationt+1: = MasterBedroom

8 DYStateNOt(N9) ∧ RobotLocationt = WC2 RobotLocationt+1: = LivingRoom

9 DYStateNOt(N9) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = WC2

10 DYStateNOt(N15) ∧ RobotLocationt = Bedroom2 RobotLocationt+1: = LivingRoom

11 DYStateNOt(N15) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Bedroom2

12 DYStateNOt(N17) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = CarPorch

13 DYStateNOt(N17) ∧ RobotLocationt = CarPorch RobotLocationt+1: = LivingRoom

14 DYStateNOt(N18) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Bedroom3

15 DYStateNOt(N18) ∧ RobotLocationt = Bedroom3 RobotLocationt+1: = LivingRoom

16 DYStateNOt(N19) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Kitchen

17 DYStateNOt(N19) ∧ RobotLocationt = Kitchen RobotLocationt+1: = LivingRoom

18 DYStateNOt(N23) ∧ RobotLocationt = Kitchen RobotLocationt+1: = WetKitchen

19 DYStateNOt(N23) ∧ RobotLocationt = WetKitchen RobotLocationt+1: = Kitchen

20 DYStateNOt(N30) ∧ RobotLocationt = WetKitchen RobotLocationt+1: = Garden

21 DYStateNOt(N30) ∧ RobotLocationt = Garden RobotLocationt+1: = WetKitchen

22 DYStateNOt(N33) ∧ RobotLocationt = LivingRoom RobotLocationt+1: = Garden

23 DYStateNOt(N33) ∧ RobotLocationt = Garden RobotLocationt+1: = LivingRoom

24 DYStateNOt(RobotApproacht)∧

DYAtMOt(MOIDrest) = RobotApproacht∧ DYAtMOt+1(MOIDrest): = NRobot∧

NOLocation(RobotApproacht , RobotLocationt)∧ RobotHoldt+1: = true

¬RobotHoldt

25 DYStateNOt(RobotApproacht)∧

DYAtMOt(RobotHoldrest) = NRobot∧ DYAtMOt+1(RobotHoldrest): = RobotApproacht∧

NOLocation(RobotApproacht , RobotLocationt)∧ RobotHoldt+1: = false

RobotHoldt

26 NOLocation(RobotApproacht , RobotLocationt) DYTunet+1(RobotApproacht): = DYTunet(RobotApproacht)+ 1

27 NOLocation(RobotApproacht , RobotLocationt) DYTunet+1(RobotApproacht): = DYTunet(RobotApproacht)− 1
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shortest number of activities based on the basic services 
aforementioned.

An implicit goal of fetching the book can also be car-
ried out. Case 1 explicitly states which book to deliver 
to the human. One can also set up an implicit goal as 
follows:

where the planner will find any book to be delivered to 
the human. Sequence of plans remains the same, except 
that the average time of planning is 1.941 seconds, as it 
covers a wider search space.

Case 2: Dynamic planning under uncertain situation
Planning needs to take into account the fact that the 
environment will change in the course of planning or 
plan execution. The planner explained in “Planner mod-
ule” section supports dynamic re-planning, which means, 
if inconsistency is met, re-planning can take place, taking 
into account current information.

In this case study, the robot needs to fetch the human 
(who is in the living room) a canned drink. At the start of 
the experiment, as shown in Table 1, 3 canned drinks are 

∃z((FMOType(z) = Book) ∧ (DYAtMOK (z) = NHuman))

present in the home. During the experiment, we simu-
late the condition where a person takes away the canned 
drink that the robot is after just before it reaches for it, 
except for the last (or 3rd) canned drink. Case 2 goal is 
simple as follows:

The generated plan (and re-planning) is shown as follows:
Case 2
Approach N19⇒ Open N19⇒ Pass Door N19 to the 

Kitchen⇒ Approach N22⇒
Open N22⇒ Pick up M1 from N22⇒ Pass Door N19 to 

the Living Room⇒ Approach
NHuman⇒ Place M1 at NHuman
Planning time = 1.82 s
Inconsistency during execution at “Pick up M1 from 

N22”. Re-planning is performed...
Approach N20⇒ Open N20⇒ Pick up M2 from N20⇒ 

Pass Door N19 to the Living Room⇒ Approach NHu-
man⇒ Place M2 at NHuman

Planning time = 1.14 s
Inconsistency during execution at “Pick up M2 from 

N20”. Re-planning is performed.

∃z((FMOType(z) = CanDrink) ∧ (DYAtMOK (z) = NHuman))

Fig. 4  Case 1: Simple object fetch for human. Step 1 is the starting point. The robot proceeds to master bedroom door(N6) and opened it in Step 2. 
It then goes to the cupboard (N11), opens it, and gets a book, and closed the cupboard in Step 3. Finally, in Step 4, it goes into the master bedroom 
and passes the book to the human
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Pass Door N19 to the Living Room⇒ Approach N15⇒ 
Open N15⇒ Pass Door N15 to Bedroom 2⇒ Approach 
N12⇒ Open N12⇒ Pick up M3 from N12⇒ Pass Door 
N15 to the Living Room⇒ Approach NHuman⇒ Place 
M3 at NHuman

Planning time= 2.17 s
Figure  5 shows the robot execution to fulfill the goal. 

At the initial stage, there are three canned drinks, two 
in the kitchen (with MOID M1 and M2) and one in bed-
room two (with MOID M3). The robot’s initial plan is 
to fetch M1 from the fridge in the kitchen. Right before 
it can fetch the drink, someone takes it. While try-
ing to pick an object, a precondition for the activity is 
DYAtMOt(MOIDrest) = RobotApproacht that requires 
the object the robot wants to fetch to be in the location 
the robot approaches. Therefore, a missing M1 means the 
precondition cannot be fulfilled, and thus, from Fig.  1, 
this will lead to re-planning. Re-planning occurs until the 
robot manages to get a canned drink and passes it to the 
human.

Case 3: Inferences for making choices
As an example, when human gives command to turn on 
the light in the living room, considering there are mul-
tiple lights, he/she would convey something like “Turn 
on a dim light in the living room”, instead of “Turn on 
light A32”. In this example, it doesn’t matter which light 
is being turned on, as long as it is a dim light. Therefore, 
properties of objects are much more crucial. This case 
demonstrates the capability of the planner to make intel-
ligent choices based on the properties of objects it needs 
to handle, instead of explicit definition of objects.

The goal is to fetch an object of type “Towel” and 
located in the garden, and transfer it to cabinet N11. In 
our case study, our home has two towels M5 (in the mas-
ter bedroom) and M6 (in the garden). In this goal, no 
explicit definition of the object ID is specified. Instead 
the planner needs to select these objects based on the 
stated properties. The goals are shown as follows:

∃x, y((FMOType(x) = Towel) ∧ (DYAtMO0(x) = y)

∧ NOLocation(y,Garden) ∧ (DYAtMOK (x) = N11))

Fig. 5  Case 2: Dynamic planning under uncertain situation. Different colors of path trajectories shows different plans, where red represents 
executed the first plan, which subsequently leads to green (due to missing M1), after which leads to the blue (due to missing M2). From step 1 to 3, 
the robot tries to fetch M1 from the fridge N22. In step 3, due to missing M1 (due to someone taking it away), re-planning is performed, which leads 
the robot to fetch M2 from the cabinet(N20) in step 4. As M2 is missing too, re-planning is performed, which leads to the robot fetching M3. It goes 
to bedroom 2 in Step 5, and fetch M3 in the cabinet in Step 6. Finally, it brings it to the human in the living room in Step 7



Page 14 of 17Tay et al. Robomech J  (2016) 3:17 

The generated plan is as follows:
Case 3
Approach N33⇒ Open N33⇒ Pass Door N33 to 

the Garden⇒ Approach N31⇒ Open N31⇒ Pick up 
M6 from N31⇒ Pass Door N33 to the Living Room⇒ 
Approach N11⇒ Open N11⇒ Place M6 at N11

Planning time= 1.36 s
Executing the plan, the robot will transfer towel M6 in 

the washing machine to N11. To get towel from the mas-
ter bedroom, all one needs to do is to change the location 
to MasterBedroom in the goal as follows:

This demonstrates the ability to make intelligent choices, 
where making inferences becomes part of the planning 
process, which is an extension from [15] (where choices 
need to be explicitly made). ASP approach [12, 13] can 
provide such descriptive power, but currently it is still 
new in the field of planning, and it cannot directly handle 
numbers as shown in Case 4.

Case 4: Reasoning and planning with numbers
In alot of cases, manipulation and reasoning with num-
bers are required, such as the case in volume control and 
triggers from numerical constraints. CSP planner is able 
to cover these domains under one declarative language. 
This case study will demonstrate this capability through 
tuning the fan volume based on the temperature. Given 
the following goal:

N37 is a volume tuner and has an initial state 2. Varia-
ble “Temperature” records the temperature of the house, 
which can be easily embedded into the CSP planner. The 
states that if the temperature rises above 30, N37 needs 
to be tuned to more than 4.

Given the current temperature to be 32. The following 
shows the plan:

Case 4
Approach N37⇒ Tune up N37 by 1⇒ Tune up N37 by 

1⇒ Tune up N37 by 1
Planning time = 0.25 s
Since the temperature is more than 20, N37 needs to be 

more than 4. With an initial value of 2, the robot needs 
to find ways to realize this with the activities it has. The 
robot will first approach N37, and then uses 1-increment 
tuner activity three times to get N37 to 5.

Currently, from literature review, there is no approach 
that can accommodate planning and number manipula-
tion and reasoning under the same declarative language, 
except introducing an extension to it. To be able to 

∃x, y((FMOType(x) = Towel)

∧ (DYAtMO0(x) = y) ∧ NOLocation(y,MasterBedroom)

∧ (DYAtMOK (x) = N11))

(Temperature > 30) → (DYTuneK (N37) > 4)

describe them in one declarative way has two advantages, 
which are (1) Work on generalization of robot planning 
can be done (2) Optimization method can be easily stud-
ied to improve planning.

Case 5: Reusability of activities
As stated in the introduction, robot is useful in the evo-
lution of the smart home, where it can dispense services 
that are yet to be supported by available smart devices. 
Since the number of smart devices will continue to 
grow, the robot is required to co-operate with these 
devices.

The services of these smart devices can be easily con-
structed with the precondition/effect definition [15], 
which can be used by the CSP planner. In this case, we con-
sider the door to bedroom 2 (N15) to be installed a motor, 
which will open/close the door automatically. The activity 
definition is very simple, where it doesn’t have a precondi-
tion, and the effect is just DYStateNOt(N15) = Open or 
DYStateNOt(N15) = Close.

Lets consider the goal where the robot needs to move 
M3 (which is in bedroom 2) to the living room table 
(N34) as follows:

The generated plan is as follows:
Case 5
N15 opens (automatic)⇒ Pass door N15 to bedroom 

2⇒ Approach N12⇒ Open N12⇒ Pick up M3 from 
N12⇒ Pass door N15 to the living room⇒ Approach 
N34⇒ Place M3 at N34

Planning time = 0.73 s
As shown in the plan, the activity for the automatic 

door can simply be executed to aid the robot. This can be 
performed without having to redefine sub-goals or ontol-
ogies, or making additional rules regarding additional 
alternatives. CSP planner can execute them where it sees 
fit, which shows the benefit of reusability.

Case 6: Complex goals
Case 6 showcase the ability to handle complex goals. In 
Case 1, goals are considered direct commands from the 
user. Yet in a lot of cases, goals are imposed by environ-
mental situations and implicit rules, such as the opening/
closing of the appropriate doors to cut off rooms to pre-
vent smoke from spreading, turning on the right amount 
of light when the surveillance camera is activated, and so 
on.

For this case, assume the user wants to transfer a cold 
drink out of the fridge (N22) while he/she is attending 
something else in the wet kitchen, and that there is an 
inherent rule where the fridge must always be stocked 
with canned drinks. Besides, there is a little smoke in the 

DYAtMOK (M3) = N34
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wet kitchen, which triggers a goal to request for window 
in the wet kitchen to be opened. The goals, both from 
human commands and trigger are listed below:

Goal 1:
∃x, y((FMOType(x) = CanDrink)

∧ (DYAtMO0(x) = N22) ∧ (DYAtMOK (x) = y)

∧ (FNOType(y) = Cabinet) ∧ (DYStateNOK (N22) = Close)

∧ (DYStateNOK (y) = Close))

Goal 2:
∃z((FMOType(z) = CanDrink) ∧ (DYAtMOK (z) = N22))

Goal 3:
∃x((FNOType(x) = Window) ∧ (DYStateNOK (x) = Open)

∧ NOLocation(x,WetKitchen))

The first goal states that there is a canned drink,x ,that 
should be initially in the fridge and at the final stage, 
should be in an object, y, that is of type ‘Cabinet’. This 
y should be closed at the final stage, and, like wise for 
the fridge. The second goal states that there is a canned 
drink, z, which should be in the fridge at final stage. The 
third goal states that an object x which is of type ‘Win-
dow’ and located in the Wet Kitchen should be opened. 
This goal is the smoke triggered goal.

The goals require the planner to make choices on the 
objects it need to fetch as well as the windows it needs to 
open, which demonstrates implicit goals.

The following shows the plan:
Case 6
Approach N19⇒ Open N19⇒ Pass door N19 to the 

kitchen⇒ Approach N22⇒ Open N22⇒ Pick up M1 
from N22⇒ Approach N20⇒ Place M1 at N20⇒ Close 
N20⇒ Pick up M2 from N20⇒ Close N20⇒ Approach 
N22⇒ Place M2 at N22⇒ Close N22⇒ Approach 
N23⇒ Open N23⇒ Pass door N23 to the wet kitchen⇒ 
Approach N29⇒ Open N29

Planning time = 82.6 s
Robot execution is shown in Fig. 6. The robot will enter 

the kitchen and approach the fridge(N22) to obtain the 
cold drink (M1). It then chooses to place it in the kitchen 
cabinet(N20) due to the fact that all movable objects should 
be placed at a non-movable object like the cabinet. Objects 
will not be placed at non movable objects like doors as 
restrictions are made. Since N20 has another canned drink 
inside, the robot will transfer that to the fridge, after which 
all cabinet and fridge doors are closed. The robot then pro-
ceeds to the wet kitchen to open the window N29.

Although the goals are achieved, the time it took for 
planning is more than 1  min, which is considered too 
long, especially in times of emergency. Therefore, meth-
ods to distribute the goals into manageable sub-goals are 

required. But care should be taken as this may introduce 
Sussman Anomaly. For example, if Goal 1 and 2 are sepa-
rated, the achievement of Goal 1 (bringing out M1 from 
the fridge) may be undone when trying to fulfill Goal 2 
separately.

Besides, knowledge base can be further exploited by 
reducing as much uncertainty as possible. The use of 
existential quantifiers will increase search space, thus, 
slowing down the planning process. With more uncer-
tainty as to which object to deal with, use of existential 
quantifiers can be reduced.

We would like to think of the intelligence of smart 
home to consist of the planner (as what this paper is 
about) and knowledge base (which consists of database 
and inference engine). As shown in this paper, the CSP 
planner is capable of performing inference to choose the 
appropriate object to attend to, yet, such inference can 
be made separately from the knowledge base. Therefore, 
there is a gray area of who should be dealing with that. 
In this paper, we are not ready to answer this question 
as it depends on the full design of the smart home, but 
the implication can be seen from how the goal is con-
structed as in Case 6. Given the three goals above (which 
are implicit), the planner needs to perform inference to 
choose the objects. But the three goals above can also be 
simplified to explicit direct goals, such as:
(DYAtMOK (M1) = N20), which means canned drink 

M1 should be in cabinet N20 as goal.
To have such simplified goal, knowledge base needs to 

come up with direct answers of what objects to attend to. 
This also means the making of choices is separated from 
the planner, and other complications might ensue. If the 
inference engine is run according to OWL description 
logic, there is yet another issue of it taking on the open 
world assumption, which requires further work to com-
bine them.

Therefore, one can use solely the planner by providing 
it with well-constructed implicit goals (but may be com-
plicated), and which, may take up more planning time, or, 
the knowledge base can come provide direct answers to 
the choices, but risk further complications due to differ-
ent logic used.

Conclusions
Service composition provides robot with a higher level 
plan of execution. Service composition for a service 
robot is developed via representing and solving plan-
ner problem in terms of CSP. CSP provides a means to 
define problems declaratively, and is also able to support 
variables of wider domain. The few basic type of services 
and their corresponding terms are optimized for faster 
planning. Simulation shows that the system is able to 
perform tasks bounded by complex logical rules, yet no 
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pre-programming is required to combine different ser-
vices as they are loosely bounded. Intelligent decision 
making for object selection is embedded into the plan-
ning problem through the extended structure of the 
original CSP planner [15]. The method is also standard-
ized to determine sub-locations for the sake of mobility, 
and also relationships between objects as well as their 
properties. This enables automatic generation of plan-
ning rules.

Currently, the system is far from perfect. Given the 
number of rules imposed without restriction, planning 
time will increase until it is not practical for emergency 
situation. Method to distribute goal into sub-goals is cru-
cial in this respect. Besides, currently, all the constraints 
imposed are hard constraints. More research need to be 
done to determine the possible soft constraints that can 
be utilized for service robot.

In future work, knowledge base represented accord-
ing to an appropriate building ontology should be 
exploited to provide much more intelligence towards 
determining the values of the terms. The addition of 
Description Logic to model home situation and their 

relationships can provide all necessary information to 
generate conditions of the services, while at the same 
time the robot will provide feedbacks back to the 
knowledge base.
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