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Abstract 

In a musculoskeletal system, the musculoskeletal potential method utilizes the potential property generated by the 
internal force between muscles; posture control can be achieved by the step input of muscular tension balancing at 
the desired posture. The remarkable aspect of this method is that neither sensory feedback nor complicated real-time 
calculation is required at all. However, previous studies addressed only point-to-point control as motion control. In 
other words, with the focus on the convergence to the desired posture, path tracking has not been discussed. Extend-
ing the previous studies, this paper proposes a path tracking control based on a sensorless feedforward approach. 
The proposed method first finds the optimal set of muscular forces that can form the potential field to the desired 
potential shape realizing the desired path; next, inputting the obtained muscular forces into the system achieves path 
tracking. For verification, this paper demonstrates a case study of a musculoskeletal system with two joints and six 
muscles. In this case study, a constrained nonlinear programming method is used to find the optimal muscular force, 
and the path trackability is verified by numerical simulation.
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Introduction
One of the goals in robotics is to develop robots with 
motion performance equivalent to that of humans. 
One approach is to elucidate the mechanism of human 
motion generation and transfer it to robotics. Focusing 
on human motion generation, various hypotheses such 
as the equilibrium point hypothesis [1], virtual trajectory 
hypothesis [2], and internal model hypothesis [3] have 

been proposed from the viewpoint of exercise physiology 
and other academic fields.

On the other hand, when attention is given to the struc-
ture of the human body, a musculoskeletal structure is 
recognized in which skeletal muscles (hereafter referred 
to as muscles) are arranged around the skeleton. Because 
muscles can transmit force in tension only, the number 
of muscles is larger than the number of degrees of free-
dom (DOF) for a movement. This redundant drivability 
generates the internal force among muscles and realizes 
flexible joint motion by changing the muscular internal 
force [4]. The existence of polyarticular muscles acting on 
multiple joints also contributes to the generation of vari-
ous motions [5, 6]. Regarding the redundancy of muscles, 
the synergy hypothesis has recently attracted attention 
as a way to reduce the amount of information for motion 
generation [7–10].
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In robotics, many systems have been developed that 
apply such human structures for tendon-driven manipu-
lators [11–13] and humanoids [14, 15].

Against such a background, this study focuses on 
motion generation by the “musculoskeletal potential 
method”. Using the property that internal force among 
muscles forms a unique potential field, this method 
performs position control for a musculoskeletal sys-
tem by step-inputting the muscular tension balancing at 
the desired posture [16]. When the potential generated 
by the input muscular force has the minimum (or local 
minimum) value at the desired posture, it becomes a sta-
ble equilibrium point and the motion converges to the 
desired posture. The remarkable aspect of this method is 
that neither sensory feedback nor complicated real-time 
calculation is required at all, as long as the demanded 
muscular tension is precisely realized.

However, the stability of this method is extremely sen-
sitive to the muscular arrangement, and even a slight 
change in this arrangement strongly affects the resultant 
convergence. Kino et  al. analyzed the potential gener-
ated by the muscular internal force of a system with two 
joints and six muscles [16] and clarified the mathematical 
conditions that the muscular arrangement must satisfy 
for convergence to the desired posture [17]. Ochi et  al. 
extended this work to clarify the geometrical conditions 
to be satisfied for the muscular arrangement [18]. Mat-
sutani et  al. showed that stability can be improved by 
combining this method with sensory feedback even in an 
unstable system in which sensory feedback suffers from 
dead time [19]. Kosugi et al. showed that this method can 
be applied to a planar finger model that has waypoints for 
winding muscles around joints [20].

Previous studies on the musculoskeletal potential 
method addressed only point-to-point (PTP) control. 
That is, focusing only on the convergence at the desired 
posture, they did not discuss path-tracking. However, 
actual vertebrate animals generate motions based on path 
tracking in many cases, and path tracking is also very 
important for motion generation in robotics.

Therefore, the aim of this paper is to propose a path-
tracking control based on the musculoskeletal potential 
method and to verify its usefulness. In the musculoskel-
etal system, m muscles are necessary for the n DOF joint 
motion ( m > n ) due to the abovementioned redundant 
drive. In this case, the remaining m− n DOFs act to gen-
erate the internal force between muscles. Therefore, the 
active utilization of the remaining m− n DOFs in the 
internal force enables a change in the shape of the gener-
ated potential in the system.

In the proposed method, the first step gives the desired 
path in the joint coordinates; the second step produces 
the desired potential field to realize the desired path 

motion; the third step obtains the set of muscular inter-
nal forces that produces the potential field closest to the 
shape of the desired one; and finally, the step-input of the 
muscular internal force achieves sensorless feedforward 
path tracking control. This paper verifies the usefulness 
of the proposed method using a musculoskeletal system 
with two joints and six muscles as a case study of basic 
research.

In the following, the second section describes the out-
line of the musculoskeletal potential method. Next, the 
third section explains the proposed method. The fourth 
section verifies the proposed method using the musculo-
skeletal system with two joints and six muscles as a basic 
case study.

In this case study, at first, the desired path with one 
waypoint is created using a spline function; second, the 
desired potential field is determined from the desired 
path; next, the set of muscular internal forces minimiz-
ing the error between the generated potential field and 
the desired one is calculated by the use of constrained 
nonlinear programming. After verification of the track-
ing performance through numerical simulation, the final 
section summarizes the conclusions.

Musculoskeletal potential method
Target system
This section describes the musculoskeletal system and its 
posture control based on the musculoskeletal potential 
method. These concepts form the basis of the proposed 
path-tracking in this paper. Because the musculoskeletal 
potential method was studied in the references [16–20], 
it is only briefly explained here.

The target musculoskeletal system is modeled after a 
human limb and has n DOFs for the joints and m muscles 
(m > n) . The motion of the limb tip has n DOFs as well 
as joint motion as shown Fig. 1(a). The joint movement is 
generated by driving the muscles. This paper makes the 
following assumptions for the system:

•	 Both ends of a muscle are directly attached to the link 
(skeleton). Each muscle forms a straight line between 
both endpoints and is regarded as a massless rigid 
wire cable that can generate only tensile force (see 
Fig. 1a).

•	 Although the muscles of living organisms have vis-
cous and elastic properties [21] with various associ-
ated models  [22–24], these properties are ignored. 
Consequently, the dynamic equation of the musculo-
skeletal system is expressed as follows [25]: 

(1)M(θ)θ̈ + h(θ , θ̇)+ Bθ̇ = τ ,
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 where θ = (θ1, . . . , θn)
T ∈ ℜn×1 is the joint angu-

lar vector; M(θ) ∈ ℜn×n is the inertial matrix; 
h(θ , θ̇) ∈ ℜn×1 is a nonlinear vector; B ∈ ℜn×n is 
the joint viscosity matrix; and τ ∈ ℜn×1 is the joint 
torque vector. The joint movable range is defined as 
θmin
i ≤ θi ≤ θmax

i  ( i = 1, . . . , n).
•	 The effect of gravity is ignored. The muscles and links 

are arranged in a hierarchical structure. Owing to the 
hierarchy, the muscles and links do not interfere with 
each other three-dimensionally and are allowed to 
overlap one another in a projected plane.

•	 The target system always satisfies “vector closure 
[26]”. Singularities and their vicinities are not dis-
cussed, as they are beyond the scope of this study.

•	 The input muscular force is sufficiently large, and 
the muscles do not loosen during a motion.

The muscle length vector q ∈ ℜm×1 is defined so 
that each component in q is obtained by the distance 
between the ends of the muscle. For the muscular 
velocity vector q̇ and the joint velocity vector θ̇ , the fol-
lowing equation holds [17]:

The matrix W T ∈ ℜm×n is the Jacobian matrix that 
relates the vectors q̇ and θ̇ and is defined by the following 
equation:

Letting the vector α = (α1, . . . ,αm)
T refer to the muscu-

lar tension acting on skeletons (links), the generated joint 

(2)q̇ = −W T (θ)θ̇ .

(3)W (θ) = −
(∂q
∂θ

)T
.

torque vector τ is obtained as follows in accordance with 
the principle of virtual work:

where αi ≥ 0 (for any i) because the muscles can generate 
tension only. Furthermore, the muscular tension vector 
α is expressed as follows from the inverse relation of Eq. 
(4):

where W (θ)+ is the generalized inverse matrix defined as 
W (θ)+ = W (θ)T

(
W (θ)W (θ)T

)−1 . The vector v(θ , ke) 
exists within the null space of the matrix W (θ) defined as 
the following equation:

where ke ∈ ℜm×1 is an arbitrary vector.
The null space vector v(θ , ke) in Eq. (5) is called the 

internal force vector, which does not generate any 
resultant torque at the joint angles but exists as an 
internal force among the muscles. Therefore, the fol-
lowing is satisfied:

Control input
On the basis of the above, the previous musculoskeletal 
potential method conventionally applies the following 
Eq. (8) to the muscular tension α as a step input for posi-
tioning to the desired joint angle θd (=const.) [16–20].

(4)τ = W (θ)α,

(5)α = W (θ)+τ + v(θ , ke),

(6)v(θ , ke) =
(
I −W (θ)+W (θ)

)
ke ,

(7)W (θ)v(θ , ke) = 0.

Fig. 1  Example of muscular arrangement and its generated potential field for the musculoskeletal system with six muscles and two joints in the 
case that stability arrangement and ke = (1, . . . , 1) are employed [17] (the desired posture: θ1 = θ2 = 90 [deg])
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where vd is the constant in the previous conventional 
method because of the input constant ke . Although this 
input cannot generate any joint torque at the desired pos-
ture θd due to τ = W (θd)vd = 0 from Eq. (7), the joint 
torque when θ  = θd can apply joint torque because of 
τ  = 0 or τ = 0.

This is because the muscular internal force balancing at 
the desired posture, vd in Eq. (8), yields a unique poten-
tial field inside the system.

Noting the step input of constant α = vd , the generated 
potential P(θ) in the joint angle coordinates, θ , can be 
simply calculated by multiplying the constant muscular 
forces by the muscular extension lengths as follows:

Reference [17] analyzed the associated stability by use of 
the Lyapunov function and demonstrated that PTP con-
trol to the desired posture θd is possible when the poten-
tial P(θ) has the local minimum at θd as the local stable 
equilibrium point.

Figure 1a shows an example of muscle arrangement in 
a musculoskeletal system with two joints and six muscles; 
Fig. 1(b) demonstrates the potential generated when the 
muscular internal force vd balancing at the desired pos-
ture θd = (90, 90)T [deg] is input. In this example sys-
tem, the convergence to an arbitrary desired posture θd is 
guaranteed because the potential has a local minimum at 
any desired posture within its motion range.

(8)α = vd =
(
I −W (θd)

+W (θd)
)
ke,

(9)P(θ) =(q(θ)− q(θd))
T vd

Feedforward path tracking
Problem setting
This paper extends the abovementioned musculoskel-
etal potential method which was limited to PTP control 
and aims to achieve path-tracking control by feedfor-
ward-inputting the constant muscular internal force 
vd . The assumptions of the proposed path-tracking are 
described below:

•	 The desired path is composed of three points that 
are given in the joint coordinates θ in advance: the 
start posture θs , the final desired posture θd and a 
single waypoint θe . The desired path is the line that 
smoothly connects these three points as shown in 
Fig. 2a.

•	 From Eq. (8), path tracking is realized by balancing 
the step input of the muscular internal force α = vd 
at the desired final posture θd to each muscle. Note 
that ke is constant so that α does not change during a 
motion.

•	 If the start and final postures, θs and θd , are realized 
for path tracking, it is acceptable that the result-
ant path slightly deviates from the desired path 
( θs → θe → θd ) and does not perfectly achieve the 
desired path.

•	 In the target system, the values in the joint viscosity 
matrix B in Eq. (1) are sufficiently large that the effect 
of inertia due to acceleration in motion is relatively 
small.

Fig. 2  Desired path in the joint angle coordinates, θ = (θ1, θ2) and potential field that forms like a sliding way; θs is the start posture, θd is the final 
posture, θe is a waypoint, and P(θ) is the desired potential
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Based on the above assumptions, the proposed control 
is attributed to how to determine the muscular inter-
nal force that generates the potential field to track the 
desired path.

As mentioned above that the target system has m mus-
cles for the joint motion in n DOFs ( m > n ), and the 
muscular internal force vd exists in the m− n DOF space. 
Therefore, even when setting θd constant, the muscular 
internal force vd can vary in the m− n DOFs by chang-
ing the values in ke in Eq. (8), as vd(ke) . Consequently, the 
generated potential in Eq. (9) can be rewritten as P(θ , ke) 
when ke varies. The positive utilization of this feature 
enables path-tracking control based on the sensorless 
feedforward if the potential field P(θ , ke) can be formed 
to achieve the desired path (or its vicinity) by adjusting 
ke.

For example, in the two-joint system where the desired 
path is given in the joint coordinates as shown in Fig. 2a, 
a potential field configured for sliding with the minimum 
at θd as shown in Fig. 2b, can achieve motion similar to 
the desired path. Of course, there is a possibility that 
the potential perfectly realizing the desired path is not 
obtained even when adjusting ke , and it is difficult to fol-
low a complicated path by use of this sensorless method 
based on feedforward control. Furthermore, the resultant 
motion does not necessarily follow the target path with 
a high degree of accuracy because of the dynamic influ-
ence. These points are acceptable in this paper, as men-
tioned in the above assumptions.

Sensorless path tracking control
Based on the above preparations, this paper proposes the 
following procedure (steps 1–4) for path tracking control 
using the musculoskeletal potential method.

STEP 1 (Desired path generation) Generate the 
desired path function � composed of three points (the 
start posture θs , the waypoint θe , and the final desired 
posture θd ) in the following region R:

which belongs to the joint angle coordinates θ , as shown 
in Fig. 2a.

STEP 2 (Desired potential generation) Construct 
the desired potential Pd(θ) minimized at θd , of which the 
gradient decreases monotonically in the tangential direc-
tion from the start posture θs to the final desired posture 
θd ( θs → θe → θd ) on the desired path function �(θ) (see 
Fig. 2b).

STEP 3 (Internal force generation) For the potential 
P(θ , ke) obtained from Eq. (9), find ke∗ that minimizes the 

R = {θ = (θ1, . . . , θn) ∈ Rn | θ min
i ≤ θi ≤ θ max

i ,

i = 1, . . . , n},

following evaluation function E(ke) by varying the values 
in vector ke in Eq. (8).

where all elements in the following muscular internal 
force v∗

d
= v(θd , k

∗
e ) are positive, which is obtained by 

substituting the final desired posture θd and k∗e  into Eq. 
(6):

STEP 4 (Motion generation) Achieve path tracking by 
step-inputting the following α into a target system as the 
muscular internal force.

Case study using a system with two joints and six 
muscles
Outline of the target system
As a case study, this section performs basic verification of 
the proposed method using a system that has two joints 
and six muscles through numerical simulation. The tar-
get system is the human-arm-like structure similar to 
Fig.  1(a) with reference to [16–19]; the joint DOFs are 
n = 2 , and the number of muscles is m = 6 . The mus-
cular arrangement and physical parameters of the target 
system are shown in Fig.  3 and Table  1. The following 
subsections describe steps 1 to 3 for this case study in 
detail.

Step 1 (desired path generation)
First, the desired path ( θs → θe → θd ) is generated in 
Step 1. Although many methods exist to generate a 

(10)E(ke) :=
1

2

∫

R

∣∣Pd(θ)− P(θ , ke)
∣∣2dθ

(11)v∗d =
(
I −W (θd)

+W (θd)
)
k∗e

(12)α = v∗d

Table 1  Physical parameters for numerical simulation (2-link and 
6-muscle system)

Link mass ( m1 , m2 ) [kg] (1.678, 0.950)

Link length ( l1 , l2 ) [m] (0.315, 0.234)

Length from joint to COG (0.158, 0.117)

(lg1 , lg2 ) [m]

Link MOI ( I1 , I2 ) [kgm2] (0.011, 0.004)

Joint viscous coefficient [Nm · s/rad] (0.1, 0.1)

(µ1 , µ2 ) [Nm · s/rad]

Muscular arrangement

 (h1 , h2,..., h8 ) [m] 0.05

 (by1 , by2 , by3 , by4 ) [m] 0.01

 (d1 , d2,..., d8 ) [m] 0.02

 (bx1 , bx2 , bx3 , bx4 ) [m] 0.12
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path connecting three points, this case study employs 
a cubic spline curve.

In this case study, the movable joint range is set as 
θmin
i = 0 and θmax

i = 180 [deg] ( i = 1, 2 ). The start 
posture is defined as θs = (θs1, θs2)

T  , the final desired 
posture as θd = (θd1, θd2)

T  , and the waypoint as 
θe = (θe1, θe2)

T  . The condition is set on the desired 
path as θs2 < θe2 < θd2 (or θs2 > θe2 > θd2 ) for simplic-
ity and focuses only on the desired path function that 
can be mathematically expressed by θ1 = �(θ2) for 
θ2 ∈ [θs2, θd2] (see Appendix).

As an example for the case of θs = (85, 40)T  , 
θe = (115, 95)T  , and θd = (95, 135)T  [deg], Fig.  4 illus-
trates the desired path made by the cubic spline curve 
in the region R.

Step 2 (desired potential generation)
Next, the desired potential is generated for the desired path 
determined in Step 1. In this case study, the joint mov-
able region R is divided into three regions R1 to R3 ∈ R 
( Ri ∩ Rj = ∅ ( i, j = 1, 2, 3 ,   i  = j)), as shown in Fig.  4. In 
each divided region, the desired potential forms in a dif-
ferent manner. The three-division of the region R is per-
formed in the joint coordinates θ as follows (see Fig. 4): 

Fig. 3  Symbols for the muscular arrangement. The target system 
is the human-arm-like structure similar to that shown in Fig. 1a; the 
number of joint DOFs is n = 2 and the number of muscles is m = 6 . qi 
( i = 1, . . . , 6 ) is the muscular length

Fig. 4  Example of a desired path θ1 = �(θ2) and regions R1 – R3 (start 
posture: θs = (85, 40)T  , waypoint: θe = (115, 95)T  , and final posture: 
θd = (95, 135)T  [deg])

Fig. 5  Desired potentials Pd1 and Pd3 (start posture: θs = (85, 40)T  , waypoint: θe = (115, 95)T  , and final posture: θd = (95, 135)T  [deg], 
K1 = K3 = diag (1, 1) , Ps = 1)
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Region R1:	� segmentized by the boundary line that 
passes over the start point θs of the curve 
line �(θ2) and is perpendicular to the tan-
gent line of �(θ2) at θs.

Region R2:	� belonging to neither region R1 nor R3 in R.
Region R3:	� segmentized by the boundary line that 

passes over the final desired point θd of 

the curve line �(θ2) is perpendicular to the 
tangent line of �(θ2) at θd . The area in R2 
overlapping with R1 has priority to belong 
to region R1.

 The segmentized desired potentials on regions R1 to R3 
are, respectively defined as Pd1(θ) – Pd3(θ) as follows:

Fig. 6  Desired potential Pd2 (start posture: θs = (85, 40)T  , waypoint: θe = (115, 95)T  , and final posture: θd = (95, 135)T  [deg], 
K1 = K3 = diag (1, 1) , Ps = 1)

Fig. 7  Total desire potential Pd in the region R (start posture: θs = (85, 40)T  , waypoint: θe = (115, 95)T  , and final posture: θd = (95, 135)T  [deg], 
K1 = K3 = diag (1, 1) , Ps = 1)
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Next, the generation method of Pd1(θ) – Pd3(θ) is 
explained.

Calculation of target potentials Pd1(θ) and Pd3(θ)
The potential Pd1(θ) in the region R1 is given as the follow-
ing quadratic form that possesses the minimum value at 
the start posture θs:

where K1 is the 2× 2 coefficient matrix ( K1 > 0 ) and Ps 
depicts the potential value at θ = θs ; i.e., Pd(θs) = Ps.

For Pd3(θ) , a similar quadratic form is given by the fol-
lowing equation:

where K3 is the 2× 2 coefficient matrix ( K3 > 0 ) and 
Pd3(θ) has the minimum value Pd3(θd) = 0 at the final 
desired posture θd . In the example case of the desired 
path shown in Fig. 4, the desired potentials Pd1 and Pd3 
are as shown in Fig. 5, where K1 = K3 = diag (1, 1) and 
Ps = 1.

Calculation of the desired potential Pd2(θ)
In the region R2 , the potential Pd2(θ) is formulated to 
monotonically decrease from θs to θd along with the 
desired path θ1 = �(θ2).

As a preparation, the newly defined vector θc and path 
lengths � and ψ are explained. For any θ in region R2 , let 
us consider the perpendicular line from θ to the desired 

(13)Pd(θ) =





Pd1(θ) (θ ∈ R1)

Pd2(θ) (θ ∈ R2)

Pd3(θ) (θ ∈ R3)

(14)Pd1(θ) =
1

2

(
θ − θs

)T
K1

(
θ − θs

)
+ Ps(θ ∈ R1),

(15)Pd3(θ) =
1

2

(
θ − θd

)T
K3

(
θ − θd

)
(θ ∈ R3),

path � and define this intersection on � with the perpen-
dicular line as θc(θ) (see Fig. 4). In the case that multiple 
θc(θ) exist for a single θ , the point closest to θ is defined 
as θc(θ).

Letting � be the total length of the desired path and 
ψ
(
θc(θ)

)
 be the path length from the start posture θs to 

θc(θ) , namely ψ(θs) = 0 and ψ(θd) = � , the desired 
potential Pd2(θ) is given by the following equation:

where K2 is the 2× 2 coefficient matrix ( K2 > 0 ) and 
Pd2(θ) has the minimum value Pd2(θd) = 0 at the final 
desired posture θd . Figure  6 demonstrates the example 
of Pd2 calculated through Eq. (16) for the desired path 
shown in Fig. 4.

Figure 7 shows the total desired potential Pd , which is 
combined into Figs. 5 and 6. Although this paper gener-
ates the desired potential by the above method as a basic 
study, there exist other methods to generate the desired 
potential. It is beyond the scope of this paper to discuss 
the optimization of the desired potential Pd . In addition, 
note that the desired potential Pd is discontinuous at the 
boundaries between regions R1 to R3 as shown in Fig. 7; 
however, this discontinuous dissolution occurs in Step 3.

Step 3 (internal force generation)
To obtain the potential shape closest to the desired 
potential Pd(θ) , the next step finds ke = k∗e  that mini-
mizes the evaluation function E(ke) in Eq. (10) by chang-
ing the vector ke = (ke1, . . . , ke6)

T in Eq. (8). In this case 
study, the optimal solution of the muscular internal force, 

(16)
Pd2(θ) =

1

2

(
θ − θc(θ)

)T
K2

(
θ − θc(θ)

)

+

(
� − ψ

(
θc(θ)

)

�

)
Ps (θ ∈ R2)

Table 2  Details of three sample desired paths (A–C) for simulation verification

Sample 1 Sample 2 Sample 3

θ s (45, 45)T (135, 45)T (90, 45)T

θ e (90, 90)T (45, 90)T (68, 90)T

θd (90, 135)T (45, 135)T (90, 135)T

u k
∗

e v
∗

d
k
∗

e v
∗

d
k
∗

e v
∗

d

1 34.90 34.71 25.64 25.16 28.39 28.21

2 21.98 22.17 36.42 36.75 28.84 29.02

3 22.97 23.28 14.37 14.74 10.91 11.22

4 0.47 2.1E−07 10.62 10.09 0.46 4.2E−08

5 0.01 5.5E−07 0.33 1.2E−07 10.11 10.11

6 13.89 13.50 0.41 7.4E−07 10.00 9.63

SE 0.441 0.145 0.337

ṼP 0.281 0.092 0.215
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v∗
d
 , is numerically obtained by attributing the minimiza-

tion problem of the evaluation function E(ke) to the fol-
lowing constrained nonlinear programming method.

Minimize  E(ke)
subject to  vu > 0 (u = 1, . . . 6)

where

(17)
v = (v1, . . . , v6)

T =
(
I −W (θ)+W (θ)

)
ke . (θ ∈ R)

In addressing the above optimization problem 
numerically, each joint angle θi of θmin

i ≤ θi ≤ θmax
i  

( θmin = 0, θmax = 180 [deg]) is divided by intervals of 1 
[deg], and E(ke) is treated discretely as follows:

(18)E(ke) =
1

2

M∑

j=0

N∑

k=0

(
Pd(θ jk)− P(θ jk , ke)

)2

Fig. 8  Simulation results (sample 1: θ s = (45, 45)T  , θ e = (90, 90)T  , θd = (90, 135)T  ): a desired path � and desired potential Pd(θ) , b 3-D data of 
desired potential Pd(θ) , c generated potential P∗d (θ) , d comparison between the resultant path �∗ and the desired path �
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where θ jk = (θj , θk) , M = N = 180.
In Step 4, tracking control is performed by inputting 

v∗
d
 , which is obtained by substituting the optimum solu-

tion k∗e  into Eq. (11), as the muscular tension vector α in 
Eq.(12).

Verification by numerical simulation
This subsection verifies the performance of the proposed 
method for this case study through numerical simulation. 
Due to space limitations, the resultant tracking for the 
three samples are reported as examples. Table  2 shows 

the details of these samples (1–3), such as θ s , θ e , θd , k∗e  , 
and v∗

d
.

Hereafter, the potential generated by the muscu-
lar tension input α = v∗

d
 is defined as P∗

d(θ) , and the 
resultant motion path generated by inputting v∗

d
 to the 

target system is defined as �∗ . Each desired path � of 
the three samples is shown in Figs. 8a, Fig. 9 and 10a, 
desired potential P(θ) in (b), generated potential P∗

d(θ) 
in (c), and resultant motion path �∗ in (d).

Although it is impossible to realize perfect path 
tracking because this method does not perform any 

Fig. 9  Simulation results (sample 2: θ s = (135, 45)T  , θ e = (45, 90)T  , θd = (45, 135)T  ): a desired path � and desired potential Pd(θ) , b 3-D data of 
desired potential Pd(θ) , c generated potential P∗d (θ) , d comparison between the resultant path �∗ and the desired path �
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sensory feedback or complex real-time calculations, the 
resultant paths �∗ in Figs. 8d, 9, 10d show that a certain 
degree of path tracking is possible. To quantitatively 
evaluate the control performance, this paper employs 
the following evaluation value ṼP by the use of the area 
SE as follows:

where SE is the area surrounded by the resultant path �∗ 
and the desired path � as follows:

(19)ṼP =
SE

|θd2 − θs2|
,

Note that ṼP means that the smaller value has the higher 
tracking accuracy. The values of SE and ṼP of samples 1–3 
are shown at the bottom of Table 2.

Discussion of simulation results
From the result of ṼP in Table 2, sample 2 has the small-
est value ( ̃VP = 0.092 ), sample 3 has the second smallest 
( ̃VP = 0.2145 ), and sample 1 has the largest ( ̃VP = 0.281 ). 
In addition, ṼP of sample 2 is approximately 30–40% 

(20)SE =

∫ θd2

θs2

√(
�∗(θ2)−�(θ2)

)2
dθ2.

Fig. 10  Simulation results (sample 3: θ s = (90, 45)T  , θ e = (68, 90)T  , θd = (90, 135)T  ): a desired path � and desired potential Pd(θ) , b 3-D data of 
desired potential Pd(θ) , c generated potential P∗d (θ) , d comparison between the resultant path �∗ and the desired path �
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compared to those of the other two although samples 1 
and 3 have almost the same value.

Figure  9d shows that sample 2 actually achieves very 
accurate tracking. On the other hand, from Figs. 8d and 
10d, the path accuracy is poor in both samples 1 and 3; 
sample 1 slightly realizes the target curve compared with 
sample 3 although its ṼP is slightly worse than that of 
sample 3.

Considering the accuracy of these generated paths, 
there are two main reasons for the path error. 

(i)	� differential between the generated potential P∗
d(θ) 

and the desired one Pd(θ).
(ii)	� dynamic effect, such as the inertia of the system.

However, in the target system of this case study, the 
value of joint viscosity is relatively large so that the 
dynamic influence, such as inertia, might be reduced. In 
Figs. 8 and 10 where the path errors are large, each dif-
ference between the desired potential Pd(θ) (in (a)) and 
the generated potential P∗

d(θ) (in (d)) is large. Therefore, 
in this case study, the first reason (i) could be dominant.

With regard to the accuracy of the generated potential 
P∗
d(θ) , constrained nonlinear programming was used in 

the preceding section; however, there is a possibility that 
the solution falls into a local minimum. Additionally, 
extremely small positive values exist in v∗

d
 , as shown in 

Table 2. Based on these points, the discussion of the tech-
nique for selecting a better k∗e  is a future issue.

Conclusion
Focusing on the redundancy of muscular internal force, 
this paper proposed a control method for realizing the 
desired path-tracking by adjusting the muscular inter-
nal force. In addition, the trackability of the proposed 
method was verified by using a two-joint and 6-muscle 
system through numerical simulation. The simulation 
results showed the possibility of tracking control even 
though this method does not apply any sensory feed-
back or complicated real-time calculations. The result is 
expected not only to be applicable to the motion control 
of robot manipulators with musculoskeletal structures 
but also to be helpful for the elucidation of the principle 
of motion generation for actual musculoskeletal living 
organisms.

This paper placed an emphasis on the basic per-
formance of the proposed method; the case study 
addressed only simple desired paths that had only a 
single waypoint between the start and final postures. 
Therefore, it is debatable how to generate the poten-
tial corresponding to the more complicated desired 

path. In addition, there is room for the discussion of 
the selection method of the muscular internal force 
that realizes the best potential close to the desired one. 
These points will be addressed in future works.

Furthermore, this paper focused on the input poten-
tial from the viewpoint of statistics. However, because 
the generated motion is dynamically affected by such 
inertia, one of the future works should address the 
issue of path tracking that also considers the kinetic 
influence.

Appendix
By using a cubic spline curve, the desired path θ1 = �(θ2) 
can be expressed as follows (in the case of θsi ≤ θei ≤ θdi):

where βj , γj , δj , and ǫj ( j = 0, 1 ) are constants. Further-
more, the constraint conditions at both ends of the path 
are given by the following equation:

In addition, by giving the condition of continuity at the 
waypoint ( �(θ2) , d�(θ2)/dθ2 , and d2�(θ2)/dθ

2
2  have the 

same value), it becomes possible to determine the value 
of each constant.

In the case of θsi ≥ θei ≥ θdi , a similar spline curve cor-
responding to this condition is used.
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(21)

�(θ2) =





β0(θ2 − θs2)
3 + γ0(θ2 − θs2)

2

+δ0(θ2 − θs2)+ ǫ0 when θ2 ∈ [θs2, θe2]

β1(θ2 − θe2)
3 + γ1(θ2 − θe2)

2

+δ1(θ2 − θe2)+ ǫ1 when θ2 ∈ [θe2, θd2],

(22)
d2�(θ2)

dθ 2
2

∣∣∣
θs2

=
d2�(θ2)

dθ 2
2

∣∣∣
θd2

= 0.
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