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One‑touch calibration of hum‑noise‑based 
touch sensor for unknown users utilizing 
models trained by different users
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Abstract 

Hum-noise-based touch sensors (HumTouch) are capable of recognizing human touch on semiconductive materi‑
als using the current leaking from the finger to the surface. Thus far, calibration for these hum-noise-based touch 
sensors has been performed for individual users because of the individual differences in hum-driven electric currents 
in human bodies. However, for applications designed for unknown users, time-consuming calibration for individual 
users is not preferred, and a new user should be able to use the sensor immediately. For this purpose, we propose a 
new calibration method for HumTouch. In this method, learning datasets collected from multiple people and a few 
extra samples from a new user are collectively used to establish a touch localization estimator. The estimator is com‑
puted using the kernel regression method with weighted samples from the new user. For a 20 × 18 cm2 paper, the 
mean localization error is reduced from 1.24 cm to 0.90 cm with only one sample from the new user. Hence, a new 
user can establish a semipersonalized localization estimator by touching only one point on the surface. This method 
improves the localization performance of HumTouch sensors in an easy-to-access manner.
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Introduction
Capacitive sensing has been adopted in most com-
monly-used and commercially successful touch-sensitive 
methods. This sensing method detects the changes in 
the electric charges within a uniform electrostatic field 
[1–3], and is extensively used in touch panels and but-
tons. Recently, touch localization technology that can 
be applied to nonspecialized surfaces or objects has 
attracted the attention of researchers. Most of these 
techniques are aimed at furniture and cloth, rather than 
touch panels for electronic appliances. An example is the 
electrical tomography method [4–7], which uses several 
pairs of electrodes to apply voltages to a resistive surface. 

The touched location can be computed by recording the 
changes in the electrical impedance between the elec-
trodes. Optical methods such as cameras, which detect 
and trace human fingertips, can be applied to any surface 
as long as the occlusion problem is not severe [8–12]. In 
addition, soft or thin pressure-sensitive sheets have been 
used for constructing touch-sensitive areas on free-form 
surfaces [13–17]. Other approaches include radio-fre-
quency identification tags for sensing touch events and 
localization [18], inertial measurement unit sensors for 
tracking fingertips and recognizing gestures [19], and 
methods utilizing the propagation of acoustic waves in 
solid materials [20]. Multi-axial force sensors can also 
turn objects such as furniture into touch sensitive inter-
faces [21–23]. Furthermore, a method based on spray 
coating conductive substances can be easily applied to 
objects with complex shapes for forming a touch-sensi-
tive surface [6, 7, 24]. Moreover, wearable sensors, such 
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as [25, 26], are a potential approach to detect a touch on 
objects without sensory instruments.

We focus on a sensing method that utilizes environ-
mental AC-hum-noise [27–33]. For example, Cohn et al. 
demonstrated that the touch positions on a wall could be 
discriminated by monitoring the voltage at an electrode 
on human skin [27]. In their experiment, the hum-noise 
in the wall was detected through human skin when a 
person touched the wall. The hum-noise-based sens-
ing method employed in this study is called HumTouch 
[34–37], which uses the environmental noise leaking 
from human fingers onto the surfaces of conductive or 
semiconductive objects. Touch or finger localization is 
achieved based on the voltages recorded at multiple elec-
trodes attached to the surface [35–37]. In previous stud-
ies on hum-noise-based touch sensors, calibration for 
localization was performed for individual users, using 
machine learning or statistical approaches comprising 
support vector machines and regression analysis [27–30, 
35–37]. Because of the individual differences in human 
bodies, the voltages recorded on material surfaces differ 
among users, leading to inaccurate localization of touch. 
For certain applications, calibration for individual users 
before using the sensors is acceptable or suitable; how-
ever, other applications require easy access to hum-noise-
based touch sensors by unknown users with less effort for 
sensor calibration.

Herein, we propose a calibration method in which 
only one or a few samples from a new unknown user and 
many samples collected from various people are com-
bined to build a semipersonalized calibration model. The 
extra samples from the new user are weighted to tailor 
the calibration model to the user. We examine a method 
that uses 20× 18 cm2 paper coated with conductive ink. 
We investigate the suitable weighting values and the extra 
samples required for improving the localization accu-
racy. To the best of our knowledge, a method similar to 
our semipersonalized method for touch sensors has not 
yet been developed. This is mainly because, in principle, 
most of the previous touch sensors do not require cali-
bration for individuals because their measurement accu-
racy does not depend on individual users. For example, 
electrical tomography methods utilize the changes in the 
electrical impedance caused by the deformation of the 
surface touched by the user. Hence, calibration models 
are required for individual surfaces, but not for individual 
users.

Touch-sensing methods utilizing hum-noise have dis-
tinctive features from other sensing methods. First, this 
method does not require any sensing structures on the 
surface to be measured. It does not require any resistive 
or capacitive materials and layers installed on the surface 
as long as the surface material is semiconductive. Hence, 

HumTouch may allow us to turn wooden products [36], 
such as furniture, and those covered with paper [35, 37] 
or cloth into touch-sensitive interfaces. Furthermore, 
HumTouch can localize a human body in water [38]. The 
second prominent feature is the passivity. Methods based 
on hum-noise do not excite object surfaces by apply-
ing voltage or vibration, for example; hence, they may 
be suitable for sensing large-area surfaces such as a wall 
and floor. Camera-based touch-sensing methods [8–12] 
and acoustic methods [20] also share these two features 
whereas the former suffers from occlusions and the latter 
is not applied for soft materials. Our calibration method 
for HumTouch is expected to realize touch-detection 
functions for a variety of objects described above in pub-
lic and domestic spaces.

Methods
General principle of the HumTouch sensor
Electrical grids are an essential infrastructure in modern 
cities. AC power lines constantly generate electromag-
netic waves known as hum-noise during the transmission 
of electricity, which react with conductive or semicon-
ductive objects nearby. The human body includes con-
ductive substances such as minerals, which react with 
these hum-noise-producing currents in the body, as 
shown in Fig.  1. Therefore, when a human touches a 
conductive object, current leaks from the finger onto 
the object. These currents can be detected using voltage 
acquisition devices attached to the surface of the object. 
HumTouch sensing technology uses these currents for 
touch localization on papers [35, 37], woods [36], and in 
water [38] and gesture recognition [34].

Material and setting
We used a 20× 18 cm2 wiping paper (Kimtowel, Nip-
pon Paper Crecia Co. Ltd., Japan) as the experimental 

Fig. 1  Principle of HumTouch. HumTouch utilizes the current leaking 
from a human body when conductive substances in the body react 
with the electromagnetic waves generated by AC power lines in 
buildings
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material. The paper was painted with a semiconductive 
ink [34], which contained 15 g of polyvinyl alcohol, 300 
mL of ultrapure water, 75 mL of polyethylene glycol 400, 
and 37.5 mL of glutaraldehyde. After painting, the paper 
was dried at room temperature for a week. After these 
processes, the paper remained dry and flexible, as shown 
in Fig. 2.

Further, 7× 7 points were marked on the paper at 
intervals of 2.5 cm and 2.25 cm. The ratio of these inter-
vals follows the dimensions of the paper. An electrode 
was attached to the center of each side of the paper (total 
of four electrodes), following [37], as depicted in Fig. 2a. 
These electrodes were then connected to an oscilloscope 
(HS6DIFF, TiePie Engineering, Netherlands; sampling 
frequency: 500 kHz) to record the voltages on the surface.

Experimental procedure
Experiments were conducted in an office room. Six par-
ticipants (male university students above 20 years), who 
provided written informed consent, were involved in the 
experiments. Each participant was asked to touch each of 
the 49 marked points on the paper with their right index 
finger for approximately 1 s. This procedure was repeated 
five times to collect five sample sets from the individ-
ual participants. The contact force was not restricted 
because the voltage rarely changed with the contact force 
[37]. In addition, to confirm that the participants were 
well grounded, they sat still with their two feet firmly on 
the ground. At least, one foot needed to be on the ground 
to record the voltages driven by hum noise. Further, they 
removed their shoes and remained in socks because 
some shoes deterred the data collection.

Data analysis
Localization methods are described in Section  3 that 
includes three methods based on kernel regression analy-
sis. The first method, i.e., personalized model, establishes 

estimation models by using only the samples of a certain 
person for localizing his/her touch. The second method, 
i.e., general model, establishes the model by using the 
samples of several people for localizing the touch of 
another individual. The third method, i.e., semipersonal-
ized model, uses a few samples from a certain participant 
and many samples from other participants to prepare a 
model for that participant. Three methods are based on 
the kernel regression analysis method, and comparison 
with other potential methods is not considered.

Localization methods
Voltage‑data preprocessing
The hum-noise in our experimental setting was a 50 Hz 
voltage signal. To reduce the influence of noise, we 
applied a moving average filter of length 0.2  ms with 
cut-off frequency of 2.2  kHz. After the noise-removal 
process, we recorded the maximum value detected in 
each electrode during 1  s as vi,j,e , where i ∈ {1, ..., 245} , 
j ∈ {1, ..., 6} , and e ∈ {1, ..., 4} indicate the trial, partici-
pant, and electrode, respectively. The normalized maxi-
mum voltage zi,j,e is then computed as follows:

where v̄i,j and σi,j are the mean and standard deviation for 
vi,j,1-vi,j,4.

Kernel regression model for fully‑personalized localization 
(Personalized model)
We applied kernel regression analysis, known as nonlin-
ear multiple regression analysis, to find the relationship 
between the touched locations and the recorded voltages 
because the relationship between the two variables is 
nonlinear. As a personalized localization model [35, 37], 
a regression model was constructed using data recorded 
from a single participant as the learning data. Note that 
the learning and test data were separated in a leave-one-
out cross-validation manner, where four of the five sam-
ple sets were used to build the model and the remaining 
set was used as the test set.

The location of each marked point was defined using a 
two-dimensional Cartesian coordinate system. The esti-
mated location (x̂, ŷ) for the vector of normalized voltages 
z ∈ (z1, ..., z4)

T is computed as follows:

where n is the number of samples (four trials × 49 points 
= 196), and zi = (zi,j,1, ..., zi,j,4)

T are the normalized volt-
ages for the learning samples of a single participant’s i-th 

(1)zi,j,e =
vi,j,e − v̄i,j

σi,j
,

(2)





ˆx(z)

ˆy(z)


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



�n
i=1 αx,iexp(−�zi − z�2)
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i=1 αy,iexp(−�zi − z�2)
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Fig. 2  a Semiconductive paper marked with 49 points at intervals of 
2.5 and 2.25 cm. An electrode is attached to the center of each side of 
the paper (total of four electrodes). b Dry and flexible paper
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trial, and ‖.‖ is the L2 norm. Coefficients αx,i and αy,i are 
the i-th elements of coefficient vectors αx ∈ R

n×1 and 
αy ∈ R

n×1 , respectively. The least squares solution of the 
coefficients are computed as follows:

where x = (x1, ..., xn)
T and y = (y1, ..., yn)

T are the actual 
x and y locations for the learning samples, respectively, 
and matrix K ∈ R

n×n is given by

 With reference to our previous study [37], the regulari-
zation value � = 0.001. I is an n× n unit matrix.

Kernel regression model built using data from various 
participants (General model)
As a general model for a certain participant, a regression 
model was constructed using the data recorded from the 
other five participants. Hence, the general model is the 
opposite of the personalized model, which only uses the 
data of a single target participant. The general model was 
computed for each of the six participants. The estimated 
location is computed as follows:

where m is the number of samples (five participants × five 
trials × 49 points = 1470) and zs = (zi,j,1, ..., zi,j,4)

T are 
the normalized voltages of learning sample s ∈ {1, ...,m} . 
Coefficients αx,s and αy,s are the s-th elements of coef-
ficient vectors αx and αy , respectively. These coeffi-
cients are computed using (3) and (4), with K ∈ R

m×m , 
x ∈ R

m×1 , and y ∈ R
m×1.

Weighted kernel regression model for semipersonalized 
localization (Semipersonalized model)
Addition of extra samples from the target user
To build a semipersonalized model for a certain partici-
pant, we added one or more samples recorded by the par-
ticipant to the learning data set collected from the other 
participants. This expanded learning dataset for kernel 
regression analysis includes 1470+ l samples, where l is 
the number of extra samples from the target participant. l 
ranges from one–five ( l ∈ {1, ..., 5}).

(3)αx = (K + �I)−1x

(4)αy = (K + �I)−1y,

(5)

K =






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exp(−�zn − z1�
2) . . . exp(−�zn − zn�

2)






.

(6)





x̂

ŷ
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We investigated the effect of the number and location 
of the extra l samples. Figure  3 shows their locations. 
To add one sample from the target participant ( l = 1 ), 
we tested the nine locations indicated in Fig. 3a (points 
near the corner (point 11), center (point 44), and seven 
other points). To add two samples ( l = 2 ), we tested the 
three pairs of points indicated in Fig. 3b ((point 11, 44), 
(point 14, point 44), and (point 11, point 14)). For adding 
three samples ( l = 3 ), combinations of (points 11, 17, 44) 
and (points 14, 41, 44) were tested, as shown in Fig. 3c. 
For adding four samples ( l = 4 ), combinations of (points 
11, 17, 44, 71) and (points 14, 41, 44, 74) were tested, as 
shown in Fig. 3d. To add five samples ( l = 5 ), combina-
tions of (points 11, 17, 44, 71, 77) and (points 14, 41, 44, 
47, 74) were tested, as shown in Fig. 3e.

Weighting of the extra samples from the target user
We expected that including extra samples from the target 
participant reduces the localization error. Weighted ker-
nel regression analysis was performed by adjusting coef-
ficients αx and αy as follows:

Matrix W ∈ R
(m+l)×(m+l) is given by

where I is an n× n unit matrix and 
U = diag(w,w, ...) ∈ R

l×l is the weight matrix, where w 
is the weight value. Weight value w = 1, 10, 100, or 1000.

Results
Personalized model: touch localization with the model 
constructed using samples from one participant
We established localization models for the individuals. 
For each participant, four sample sets were used as the 
training dataset and one was used as the test set, apply-
ing leave-one-out cross-validation. Figure  4 shows the 
mean and standard deviation of the localization for each 
participant. Further, we computed the arithmetic mean 
of the absolute errors for each marked point and par-
ticipant. The mean estimation error among the six par-
ticipants was 0.60  cm. Participant P4 exhibits the least 
mean localization error of 0.44  cm, whereas P6 exhib-
its the highest mean error of 0.83 cm. These estimation 
errors are generally considered small because they are 
lesser than the mean width of index fingertips of Japa-
nese males: 13.9 cm [39]. Note that the error values of the 
fully personalized models can be used as the benchmark 
scores for evaluating the other methods in this study. 

(7)αx = (KTWK + �I)−1KTWx

(8)αy = (KTWK + �I)−1KTWy.

(9)W =

[

I 0

0 U

]

,
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The estimation errors of the semipersonalized model are 
expected to be close to these errors.

General model: localization with the model constructed 
using samples from other participants
Figure 5 shows the results of the regression models con-
structed using the data of participants other than the 
tested participant. The mean estimation error among the 
six participants is 1.24  cm. For all the participants, the 
estimation errors are greater than those of the personal-
ized model. Participant P4 exhibits a mean error below 
1 cm; however, the mean errors for the other participants 
are equal to or greater than 1 cm. The errors of the semi-
personalized model are expected to be lesser than those 
of the nonpersonalized general model.

The aforementioned results suggest the extent of dif-
ference among individuals. P5 and P6 may be distinctive 

from the others in terms of the mean estimation errors. 
Their mean estimation errors were 1.69 cm and 1.58 cm, 
respectively, whereas those for the other participants 
were less than 1.30  cm. Further, as shown in Fig.  5, P6 
exhibited large standard deviations. For this participant, 
reproducibility was relatively low whereas the stand-
ard deviations were minor for the other participants. 
The root cause of such variability within participants is 
unclear. The number of the participants is small and we 
cannot estimate the properties of population.

Semipersonalized model: localization with the model 
constructed using a few target‑user samples 
and the sample sets of other participants
Table  1 lists the mean localization errors for all the 
participants.

Point 11 Point 12 Point 13 Point 14
Point 24
Point 34
Point 44

Point 
22

Point 
33

Point 11 Point 14

Point 11 Point 14 Point 17

Point 41

Point 11 Point 14 Point 17

Point 41

Point 71

(a) (b)

(c) (d)

Point 11 Point 14 Point 17

Point 41

Point 71

Point 47

Point 77
Point 74

(e)

Point 44 Point 44

Point 44

Point 44

Point 74

O x

y

Fig. 3  a–e Location of the extra samples when a one, b two, c three, d four, and e five extra samples are added from the target participant to the 
learning data-set for building a semipersonalized model
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When single extra samples from the target partici-
pants are used for calibration, the total mean error ranges 
from 0.91–0.90  cm, irrespective of the location of the 
extra sample. When point 44 is used, the mean errors 
for P5 and P6 are 1.33 and 1.25 cm, respectively, which 
are lesser than the errors when the other points are used. 
Hence, point 44, which is near the center, exhibits the 

best localization accuracy among all the tested points, 
although the differences in the accuracy are negligible.

As shown in Table 1, when the extra sample (i.e., point 
44) is weighted with w = 10 , 100, and 1000, the mean 
errors are 0.90 cm for all w values. Figure 6 displays the 
mean and standard deviation of the localization when 
w = 1000 . The mean localization errors for the individual 

P1

P3

(a)

P2

P4 P5

P6

Fig. 4  Results of the personalized model constructed using samples from an individual target participant: a Actual locations of the 49 points. (P1–
P6) Mean estimated location and standard deviation of each of the six participants, respectively
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participants are lesser than those of the general model, as 
depicted in Fig. 5.

When two extra samples from the tested target partici-
pants are used for calibration, the total mean localization 
error is approximately 0.90 cm, irrespective of the combi-
nation of points. When three, four, or five extra samples 
are used, the total mean errors range 0.89–0.90 cm.

Figure  7 depicts the localization errors among the 
general, several semipersonalized, and personalized 

models. The mean error of the semipersonalized 
model using point 44 with no weight value ( w = 1 ) 
is lesser than that of the general model (two-tailed 
t-test with one sample, t = 15.77 , p = 1.86× 10−5 
with no p-value adjustment for multiple compari-
sons). The mean error of the semipersonalized model 
using point 44 weighted by 1000 is lesser than that of 
the general model (two-tailed t-test with one sample, 
t = 15.50 , p = 2.03× 10−5 with no p-value adjustment 

P1

P3

(a)

P2

P4 P5

P6

Fig. 5  Results of the general model constructed using samples from participants other than the target participant: a Actual locations of the 49 
points. (P1–P6) Mean estimated location and standard deviation of each of the six participants, respectively
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for multiple comparisons). There are significant dif-
ferences between the other semipersonalized mod-
els using more than one extra point and the general 
model, as shown in Fig. 7.

Discussion
As listed in Table 1, the localization error of the person-
alized model is 0.60 cm on an average and substantially 
lesser than that of the general (nonpersonalized) model 

P1

P3

(a)

P2

P4 P5

P6

Fig. 6  Results of the semipersonalized model using point 44 with w = 1000 . a Actual locations of the 49 marked points. (P1–P6) Mean estimated 
location and standard deviation of each of the six participants, respectively
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(1.24  cm). For the individual participants, the errors of 
the general model are nearly equal to or more than twice 
that of the personalized model. The average errors of the 
semipersonalized models range from 0.89–0.92 cm, indi-
cating that the localization accuracy of the semipersonal-
ized model developed in this study is between those of 
the personalized and general models. As the size of the 
contact-area of the fingertip is approximately a 1.0  cm-
diameter circle, localization errors of 0.90  cm may be 
acceptable for most touch-sensor applications, although 
our study does not assume specific applications.

When the HumTouch technique is applied to square 
paper, the points near the corner and center involve rela-
tively large localization errors. This is because the locali-
zation accuracy is relatively poor at points far from the 
electrodes [37]. The points near the corner and center 
of the paper are far from all the electrodes placed at the 
center of each side of the paper. The semipersonalized 
model can reduce the localization errors near an area by 
incorporating an extra sample of the target participant 
near the area. Thus, the calibration ability with differ-
ent points has been investigated in this study. As listed 
in Table  1, when single extra points are used for the 

semipersonalized model, the estimation error obtained 
by adding a point in the center (i.e., point 44) has the 
least total mean error of 0.90 cm. In addition, by weight-
ing the sample for point 44, the mean estimation error 
is further reduced, although this reduction is practically 
null. However, adding the extra sample is effective only 
for the surrounding area. The localization errors for 
the points in the other areas remain large. For example, 
as illustrated in Fig. 6, for the points near point 44 (the 
center point in each subfigure), the localization errors 
are corrected compared to those with the general model; 
however, the points near point 77 (right-down in each 
sub-figure) include localization error. Nonetheless, this 
study establishes that by including only a single sample, 
the nonpersonalized general model can be converted into 
a semipersonalized model with small localization errors.

Figure 7 shows that the localization errors of the non-
personalized general model are reduced by 27.8% by 
adding only one sample of the target participant. How-
ever, the addition of more than one sample is not mark-
edly effective in reducing the error. For example, adding 
five extra samples improves the localization accuracy by 
merely 0.007  cm, compared to the case where only one 

Table 1  Mean localization errors (cm) of the personalized, general, and semipersonalized models for participants P1 to P6. For the 
semipersonalized model, weight w = 1 unless otherwise specified

Model type Extra points used for semi-
personalized model

P1 P2 P3 P4 P5 P6 Mean error

General model – 1.28 1.00 1.02 0.89 1.69 1.58 1.24

Personalized model – 0.47 0.51 0.59 0.44 0.74 0.83 0.60

Semipersonalized model Point 11 0.85 0.72 0.75 0.51 1.39 1.25 0.91

Point 12 0.85 0.72 0.75 0.51 1.40 1.26 0.92

Point 13 0.85 0.72 0.75 0.51 1.40 1.25 0.91

Point 14 0.85 0.72 0.75 0.51 1.40 1.25 0.91

Point 22 0.85 0.72 0.75 0.51 1.40 1.25 0.91

Point 24 0.85 0.72 0.75 0.51 1.40 1.26 0.92

Point 33 0.85 0.72 0.75 0.51 1.40 1.27 0.92

Point 34 0.85 0.72 0.75 0.51 1.40 1.26 0.92

Point 44 0.85 0.72 0.75 0.51 1.33 1.25 0.90

Point 44,w=10 0.84 0.72 0.75 0.50 1.33 1.25 0.90

Point 44,w=100 0.84 0.72 0.74 0.50 1.33 1.25 0.90

Point 44,w=1000 0.84 0.72 0.74 0.50 1.33 1.25 0.90

Point 11,44 0.85 0.72 0.75 0.51 1.32 1.25 0.90

Point 14,44 0.85 0.72 0.75 0.51 1.33 1.25 0.90

Point 11,14 0.85 0.72 0.75 0.51 1.39 1.25 0.91

Point 11,17,44 0.85 0.72 0.75 0.51 1.31 1.24 0.90

Point 14,41,44 0.85 0.72 0.75 0.51 1.33 1.25 0.90

Point 11,17,44,71 0.85 0.72 0.75 0.51 1.29 1.24 0.89

Point 14,41,47,44 0.85 0.72 0.75 0.51 1.33 1.24 0.90

Point 11,17,44,71,77 0.85 0.72 0.75 0.51 1.28 1.23 0.89

Point 14,41,44,47,74 0.85 0.72 0.75 0.51 1.33 1.22 0.90
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extra sample is used. Furthermore, weighting the extra 
samples is ineffective in reducing the error. As aforemen-
tioned, adding extra samples reduces the localization 
errors in the area nearby those points; however, it does 
not greatly influence other area. Hence, weighting extra 
samples may not effectively reduce the mean localization 
errors. Collectively, based on the results, a new unknown 
user can complete his/her calibration to improve the 
localization accuracy by simply touching one designated 
point on the material surface.

An interesting question is how only one extra sam-
ple could improve the estimation accuracy. The number 
of samples used to establish generalized models is an 
important factor. The extra samples can be more effective 
when the sample size for the generalized model is small. 
In such a case, the generalized model does not perform 
well and can be substantially improved by incorporating 
extra samples. In contrast, the effects of extra samples 
may be relatively minor when the generalized model is 
established on the basis of a large sample. Hence, there 
should be an appropriate sample size for establishing 
the generalized model, which minimizes the estimation 
errors of semipersonalized model.

This study has certain limitations. Only six participants 
were involved in the experiment. It is unclear whether 

semipersonalized models should be based on a large 
number of participants. The number of participants and 
samples may influence the additional number of samples 
necessary for constructing semipersonalized models. 
Potentially, the more the participants and samples, the 
more are the extra samples necessary to establish semi-
personalized models because the effect of extra samples 
of the target user are obscured by the large number of 
samples from others. In contrast, semipersonalized mod-
els based on a few people may not be highly adaptive 
to unknown users. Hence, the number of people incor-
porated in the semipersonalized model is speculated to 
be a crucial design parameter. This study did not aim at 
optimizing the localization method. The methods based 
on kernel regression analysis were not compared with 
others. Kernel regression analysis is a suitable method 
for the problems discussed here; however, more effective 
methods must be explored. Furthermore, in hum-noise-
based sensors, the causes for individual differences are 
unclear and have not been thoroughly discussed. If the 
individual differences are determined by certain param-
eters, such as the body weight, then another approach 
completely different from the one adopted in this study 
can be employed to build semipersonalized models. 
In addition, it is to be noted that localization errors are 

Fig. 7  Comparison of the total mean errors. The general model obviously exhibits greater error than the semipersonalized one. The personalized 
model with smaller error than those of the general and semipersonalized models is also shown for reference. *** indicates p < 0.001 as per the 
two-tailed t-test with one sample with no p-value adjustment for multiple comparisons
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generally greater for larger surfaces [37]. If the method 
proposed in this study is applied to a larger surface, the 
localization errors may not be as small as the fingertip 
size.

Conclusion
We proposed an easy-to-use calibration method for 
unknown users of HumTouch, a hum-noise-based touch 
sensing method. Because of the individual differences in 
hum-noise-driven currents in human bodies, HumTouch 
sensors need to be calibrated for individual users, limiting 
their range of application. The proposed method incor-
porates numerous samples collected from other people 
and a few weighted new samples from a new target user 
to establish a semipersonalized model for the new user. 
When a square paper was used as a touch-sensitive sur-
face, the mean localization error was reduced from 1.24 
to 0.90 cm by adding a new point from the target user to 
the sample set obtained from other people. This localiza-
tion error is smaller than the size of a human fingertip. 
Therefore, the semipersonalized localization model using 
a weighted or nonweighted sample from the target user is 
practical for hum-noise-based touch sensors.
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