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to transfer training data for relative position 
and orientation measurement devices
Sogo Amagai*   , Qiwei Ye, Yuji Fukuoka, Shin’ichi Warisawa and Rui Fukui 

Abstract 

Car-sharing services have recently attracted considerable attention. We proposed a platooning system to reduce the 
number of vehicle distributors. The platooning system uses a measurement device embedded with low-cost infra-
red distance sensors to measure the relative position and orientation of vehicles. The relative positions and orienta-
tions are obtained from the training data. However, preparing training data is time consuming. In this study, a sensor 
clustering method that selects sensors with similar output characteristics is proposed. Consequently, a set of training 
data are used repetitively for all relative positions and orientation measurement devices embedded with sensors with 
similar output characteristics. The verification experiment of the sensor clustering revealed that the calculation range 
restriction is the key technique. Platooning has been successful in various courses by using sensors with similar out-
put characteristics. Based on the results, the proposed clustering method can effectively collect sensors with similar 
output characteristics and it realizes the training data transfer to the newly manufactured devices. In addition, it has 
the potential to improve production efficiency for the mass production of relative position and orientation measure-
ment devices.

Keywords:  Sensor clustering, Infrared distance sensor, Platooning, Autonomous vehicle

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Introduction
Recently, one-way car sharing has been spreading rapidly, 
and is expected to become an effective means of trans-
portation in urban areas in the future[1, 2]. However, it 
faces the following challenges: high labor costs for vehicle 
distributors and imbalance between supply and demand 
for vehicles [2–5]. To reduce the number of vehicle dis-
tributors and their burdens, we proposed a platooning 
system [6, 7] for urban areas. As shown in Fig.  1, mul-
tiple unmanned vehicles follow a manned vehicle. How-
ever, some research on the realization of autonomous 
vehicles (AV) in urban areas has revealed that the social 
implementation of AV is challenging owing to safety 

issues [8–11] and low social acceptance [12–14]. Hence, 
platooning can be an effective means of transportation 
in urban areas because the social implementation of 
platooning is easier than that of AV. The proposed pla-
tooning system offers four advantages over conventional 
platooning systems [15–17]. 

1.	 Configuration of the platooning system is simple and 
inexpensive because the relative position and orien-
tation between vehicles can be measured using only 
low-cost distance sensors.

2.	 Because communication is not necessary between 
vehicles, it remains uninterrupted even when driving 
in poor communication environments.

3.	 Because the pin operates inside the ring, it is not 
affected by the external environment, such as rain 
and snow.
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4.	 When the follower runs out of control, the pin and 
ring restrict the movement of the follower.

In addition, the relative position and orientation between 
vehicles are measured using the relative position and ori-
entation measurement device shown in Fig. 1. The device 
consists of a leader octagonal pin with multiple distance 
sensors (GP2Y0E02B, SHARP [18]) and a follower hex-
agonal ring. In a previous study [7], we developed a rela-
tive position and orientation measurement device for 
use in actual vehicles. The hardware in the loop simula-
tion (HILS) using the developed device proved that the 
following four cars can follow on five courses. The five 
courses are as follows.

•	 Circular operation
•	 Lane changing
•	 Slaloming operation
•	 Pulsed steering
•	 Accelerated start.

To measure the relative position and orientation, the 
relative position and orientation measurement device 
requires training data. First, distance data L should be 
obtained using distance sensors at various relative pin-
ring positions and orientations (x, y, θ) . Second, train-
ing data should be created by combining (x, y, θ) and L. 
In the relative position and orientation measurement 
device shown in Fig. 2, the relative position and orienta-
tion (x, y, θ) are calculated using L from the training data. 
However, a previous study [7] clarified that approximately 
360,000 training data points are required to achieve the 
accuracy of the relative position and orientation that ena-
bles successful platooning. Consequently, the creation of 
training data, which requires approximately 8 hours, is 
an obstacle to the mass production of relative position 
and orientation measurement devices. Therefore, in this 

study, we proposed a sensor clustering method that ena-
bles the transfer of training data to newly manufactured 
relative position and orientation measurement devices, 
and then verified its performance in order to lead the 
mass production of the relative position and orientation 
measurement devices.

In addition, this study contributes to the possibility of 
using multiple low-cost sensors without complicated 
calibration, by selecting sensors with similar output char-
acteristics through sensor clustering. First, sensor clus-
tering could be applied not only to relative position and 
orientation measurement devices for platooning, but also 
to other systems. Sensor clustering method is realized by 
acquiring sensor output characteristics readily and clus-
tering algorithms based on the sensor output character-
istics. Relative position and orientation measurement 
devices and sensor clustering method are independent 
from each other. Therefore, it is highly likely that sen-
sor clustering method is applicable to other applications 
besides relative position and orientation measurement 
devices. Second, sensor clustering method is a novel 
approach of finding similar sensors. Since sensor cluster-
ing method does not require calibrating each sensor indi-
vidually, it is time-efficient and effectively applicable to 
IoT system [19] that use a large number of sensors such 
as sensor network systems [20].

Leader 
(A driver is on board)

Follower 2
(No driver)

Relative position and orientation
measurement device

Follower 1
(No driver)
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Ring
Follower 

Distance sensors
GP2Y0E02B; 
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Pin with 8 sensors
Fig. 1  Overview of proposed platooning system
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This paper is organized as follows.

•	 Approaches and technical issues of sensor clustering 
for transferring training data

•	 A sensor output characteristic acquisition device 
developed to realize sensor clustering and its perfor-
mance evaluation

•	 Experiment to decide threshold for selecting sensors 
with similar output characteristics

•	 Verification experiment of sensor clustering
•	 An approach to the calculation range restriction of 

sensor dissimilarity for the realization of platooning 
and the changes in clustering results

•	 Verification experiment with sensor selection 
method suitable for platooning

•	 Findings and results of this paper

Concept
Transferring training data of a reference device to newly 
manufactured relative position and orientation 
measurement devices
As shown in Fig.  3, the distance to the measurement 
object d and the tilt of the measurement object ϕ affect 
the output of the distance sensors used in the rela-
tive position and orientation measurement device. The 
output characteristics of the sensors that vary with dis-
tance d and tilt ϕ are defined as L = f (d,ϕ) . L is the out-
put value of the sensor. However, the distance data L for 
calculating (x, y, θ) are different from the training data 
because the output characteristics L of each sensor are 
different. Therefore, (x, y, θ) and L of the training data 
become less relevant. Consequently, the training data 
cannot be directly transferred to newly manufactured 
relative position and orientation measurement devices 
because the accuracy of the relative position and orienta-
tion is sharply reduced.

If the output characteristics of all sensors can be 
matched through rigorous calibration [21, 22] of the 

individual sensors, the training data can be directly 
transferred to newly manufactured relative position and 
orientation measurement devices. The self-calibration 
method [21], which uses two sensors of the same type 
for calibration, does not require a highly accurate com-
parison standard; however, calibration is time consuming 
when several sensors are involved. Thus, conventional 
calibration methods, such as self-calibration, are not suit-
able for multiple sensors.

Sensor clustering for transferring training data
Therefore, we proposed a sensor clustering method that 
does not require complicated calibration of each sensor. 
As shown in Fig. 4, sensor clustering divides all sensors 
into k clusters according to the dissimilarity in the sensor 
output characteristics. The relative position and orien-
tation measurement device is composed of only sensors 
attributed to the same cluster. Sensors in the same clus-
ter have similar output characteristics, thus each distance 
data L(1)-L(8) are similar. (x, y, θ) and L of the training data 
remain relevant. Therefore, training data created using 
sensors in the same cluster may be transferred to newly 
manufactured relative position and orientation measure-
ment devices using other sensors in the same cluster.

In the above implementation method, all sensors 
used in all relative positions and orientation measure-
ment devices that transfer training data must belong to 
the same cluster. Therefore, a cluster must contain many 
sensors; hence, numerous sensors must be prepared. To 
address, this problem,we propose an equipping method 
in which the sensors that comprise a single relative posi-
tion and orientation measurement device can be selected 
from eight clusters as shown in Fig.  5. In the proposed 
method, all sensors belonging to the same cluster have 
the same position index. (x, y, θ) and L of the training 
data are relevant because of the similarity in the sensor 
output characteristics at the same position index. There-
fore, sensors from eight clusters are used in a relative 
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position and orientation measurement device with eight 
positions. The proposed equipping method is expected to 
be as effective as the case in which all the sensors that are 
composed of the relative position and orientation meas-
urement device belong to the same cluster.

For sensor clustering, it is important to obtain a sen-
sor output characteristic L = f (d,ϕ) , thus we developed 
a sensor output characteristic acquisition device shown 
in Fig. 6. Three functions were required for this device. 

1.	 High reproducibility of measurement: Small varia-
tion of measurement output under the same condi-
tions

2.	 High stability for sensor removal: Small variation of 
measurement output when a sensor is attached and 
detached at the same measurement position

3.	 High stability for sensor position exchange: Small 
variation of measurement output when a sensor is at 
the different measurement position

In addition, it is necessary to clarify the similarity of 
sensor selection with similar output characteristics. 
The normalized distance is used to evaluate the similar-
ity. Sensor p and sensor q at distance di ( 1 ≤ i ≤ Ni , Ni 
is the total number of points of distance measured) and 
tilt ϕj ( 1 ≤ j ≤ Nj , Nj is the total number of points of tilt 
measured) are acquired output characteristics. Next, 
the difference between the output values of sensors p 
and q ( ep,q(di,ϕj) = Lp(di,ϕj)− Lq(di,ϕj) ) is calculated 
and normalized for each distance di . Thereafter, the 
normalized distance Dnormal is calculated as the root 
mean square error of the normalized output values of 
sensors. (Eq. (1))

The normalized distance is smaller when the sensor out-
puts are similar for distance d and tilt ϕ . The calculation 
range of the normalized distance is d = 95-445 mm and 
tilt ϕ = 30–150 deg.

The range was determined empirically from HILS 
data. In practice, distance d and tilt ϕ used to calcu-
late the normalized distance include a range that is not 
required for platooning. Therefore, distance d and tilt ϕ 
used for platooning are calculated from the HILS data, 
and then used as the range for calculating the normal-
ized distance. By calculating the range restriction of 
the normalized distance, sensors with similar output 
characteristics will be selected for platooning. This is 
expected to improve the accuracy of vehicle position 
and orientation measurements when transferring the 
training data.

Development and evaluation of sensor output 
characteristics acquisition device
Overview of sensor output characteristics acquisition 
device
The developed sensor output characteristic acquisition 
device is illustrated in Fig. 6. Eight sensors were installed 
on P1 to P8 on side A to obtain the output characteris-
tics. The distance d between the sensor and measurement 
object is changed by an electric slider, and the tilt ϕ of the 
measurement object is changed by a stepper motor. The 
electric slider has a repetitive positioning accuracy of 
±0.02 mm, and running parallelism of 0.03 mm, which 
allows the system to reproduce the relative positions of 
the measured object and sensor with high accuracy. The 
angular positioning error of the stepper motor is ±0.067 
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deg, and the relative angles between the measured object 
and the sensor can be reproduced with high accuracy. 
The surface of the measurement object is a matt fin-
ish and white anodized to prevent specular reflection of 
infrared light.

Reference for evaluation of the device
The dissimilarity of different sensors was measured as a 
reference for the evaluation of the sensor output charac-
teristic acquisition device. We randomly selected 8 sen-
sors measured at P8, as shown in Fig. 6.

The results in Fig.  7 show the normalized distances 
between different sensors at P8. S1–S8 represent the 
eight randomly selected sensors. The minimum normal-
ized distance between the sensors was 0.015, the maxi-
mum was 0.043, and the mean of the normalized distance 
of the eight sensors µsensors was 0.029, which was used as 
a reference for the evaluation of the device. In the follow-
ing sections, an evaluation of the sensor output charac-
teristic acquisition device is described.

Measurement reproducibility
The sensor output characteristic acquisition device must 
have a high reproducibility of measurement under the 
same measurement position and same sensor used. Sen-
sor S1 was measured at P8 three times.

The matrix shown in Fig.  8 indicates the normalized 
distance between each trial, with the number of trials 
ranging from T1 to T3. The mean of the normalized dis-
tances between the three trials, µrepeat , was 0.0063. Com-
pared with µsensors (0.029), µrepeat is sufficiently small. 
Therefore, the sensor output characteristic acquisition 
device has sufficiently high measurement reproducibility.

Stability against for attach and detach of sensors
The same sensor output characteristics must be obtained 
when the same sensor is reattached to the device and 
measured. The same sensor was detached from the 
device, reattached, and measured three times. The sensor 
used was S1, and the measurement position was P8.

The matrix shown in Fig. 9 illustrates the normalized 
distance between each trial, with the number of trials 
ranging from T1 to T3. The mean of the normalized 
distances between the three trials, µremove , was 0.0066. 
µremove is fully small compared to µsensors (0.029). Con-
sequently, the sensor output characteristic acquisi-
tion device has a high stability against the attachment/
detachment of sensors.

Stability against for position change
To verify the stability against sensor position change, 
the same sensor S1 was sequentially installed and meas-
ured at P1–P8 shown in Fig. 6, and the normalized dis-
tances of the eight measurement data were calculated.

The matrix shown in Fig. 10 indicates the normalized 
distance between P1 and P8. The mean of the normal-
ized distances measured at different positions µpositions (S1 P8)
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was 0.014. µpositions is less than half that of µsensors 
(0.029). Therefore, the sensor output characteristic 
acquisition device has high stability against position 
change.

Deciding threshold of sensor clustering
Distribution of normalized distance of 132 sensors
The sensor dissimilarity threshold was determined to 
select sensors with similar output characteristics. Sen-
sors with dissimilarities below the threshold are defined 
as similar sensors.

First, the output characteristics of 132 sensors were 
obtained and the normalized distances between them 
were calculated. The distribution of normalized dis-
tances is shown in Fig. 11. The normalized distances for 
the majority of the sensor pairs are between 0.02 and 
0.03. There are a few distributions with normalized dis-
tances below 0.02 or 0.03. Based on this result, sensors 

that have normalized distance around 0.016, which is 
approximately the top 10 % of the distribution of normal-
ized distance of 132 sensors, are classified as“Good”. Sen-
sors that have normalized distance around 0.02, which is 
close to the mode value in the distribution, are classified 
as “Fair”. Sensors that have normalized distance around 
0.03, which is approximately the bottom 20 % of the dis-
tribution, are classified as “Poor”.

HILS for deciding threshold of sensor clustering
An overview of the experiment to determine the thresh-
old is shown in Fig. 12. Eight randomly selected sensors 
were used as the reference sensor groups. For each posi-
tion index, a sensor was selected that satisfies the crite-
ria of “Good”, “Fair”, and “Poor” in terms of normalized 
distance from the reference sensor. Each of the three 
selected sensor groups was used to configure the rela-
tive position and orientation measurement device. In this 
experiment, the reference sensor groups used in a rela-
tive position and orientation measurement device were 
employed to create the training data. The training data 
was transferred to a relative position and orientation 
measurement device consisting of three sensor groups 
selected from the “Good”, “Fair”, and “Poor” groups. Pla-
tooning was experimentally verified using the HILS. The 
objective of this experiment is to narrow the range of 
sensor dissimilarities that can achieve platooning when 
transferring training data based on platooning by HILS. 
Five different courses were used for HILS in a previous 
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study [7]. The Reference group (Ref.) is defined as the 
vehicle using the relative position and orientation meas-
urement device consisting of a group of reference sen-
sors. Group G, Group F, and Group P are defined as the 
groups of vehicles using the devices consisting of the sen-
sor groups selected according to the “Good”, “Fair”, and 
“Poor” respectively.

The HILS results are presented in Table  1. Group G 
maintained the highest number of platooning vehicles 
in each course, except for group P’s circular operation. 
However, even in Group G, only one following vehicle 
could maintain platooning in the circular operation, and 
the following vehicle failed in the lane changing course as 
well as in accelerated start course. Therefore, the experi-
mental results show that the normalized distance that 
can be successfully platooned when transferring training 
data is less than 0.016.

Verification experiment for sensor clustering
Sensor clustering uses hierarchical clustering (Algo-
rithm  1) and the distances between clusters are calcu-
lated using the furthest neighbor method [23]. Out of the 
132C2=8,646 pairs of normalized distances for 132 sen-
sors, only 273 pairs had normalized distances less than 
0.016, thus clusters containing many sensors were not 
generated. As shown in Fig. 5, in the verification experi-
ment, a relative position and orientation measurement 
device was configured by selecting the sensors from eight 
clusters.

Clustering was performed by setting the sensor dis-
similarity threshold T, which is an index of merging 
stops, to 0.016, 0.015, 0.014, and 0.013, sequentially using 
Algorithm 1. From the clustering results, when the sen-
sor dissimilarity threshold T is less than 0.015, most 
clusters contain only one sensor, thus the training data 
cannot be transferred. Therefore, in this experiment, 
we set the sensor dissimilarity threshold T to 0.015. The 
results of sensor clustering, in which similar sensors with 

dissimilarities below a threshold are collected, are shown 
in Fig. 13.

The sensor groups used for the sensor clustering vali-
dation experiment, selected from the dendrogram, are 
shown in Table 2.

The reference group is defined as a group of platoon-
ing vehicles using a relative position and orientation 
measurement device, which is composed of a reference 
sensor group used to create the training data. A group 
of platooning vehicles using a device composed of simi-
lar sensors and training data transferred from the refer-
ence group is defined as a transfer group (Trans.).

Figure  14 shows the results of the HILS of the four 
followers of the circular operation for the reference and 
transfer groups. The graph on the left in Fig. 14 shows 
the temporal variation in the distance between the 
center of the pin and ring of the relative position and 
orientation measurement device. The graph on the right 
in Fig. 14 shows the relative trajectories of the pin and 
ring. In the transfer group, when the leader entered the 
curve 2 seconds after departure, the distance between 
the centre of the ring and pin of follower 1 swung dras-
tically. This vibration was transmitted to vehicles 2, 3, 
and 4 with amplification, resulting in platooning failure. 
The sensors used in the transfer group were not suffi-
ciently similar to maintain the correspondence of the 
training data, which caused a decrease in the accuracy 
of the relative position and orientation measurements, 
resulting in platooning failure. The HILS for each 
course in the transfer group was conducted three times. 
In the pulsed steering and accelerated start, all the fol-
lowing vehicles were successfully maintained in all tri-
als. In addition, at least two following vehicles were 
maintained in all courses. Based on these results, the 
use of similar sensors prevents a undesirable decrease 
in the accuracy of the relative position and orientation 
measurements, which occurs when the training data is 
transferred.
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However, it is important to select more similar sensors 
to further improve the accuracy of relative position and 
orientation measurements. As the range of distance d 
and tilt ϕ used to calculate the normalized distance may 
not be suitable for platooning, the calculation range of 
the normalized distance must be restricted to those used 
for platooning.

Table  3 illustrates number of followers maintained in 
platooning by each group in the verification experiment.

Sensor clustering using calculation range 
restriction
Deciding calculation range on each position index
From the output values L(1)-L(8) of the reference sen-
sor group and the pin trajectory, distance d and tilt ϕ 
between the sensor and the measurement object (the ring 
wall of the relative position and orientation measurement 
device) were calculated at each position index, and then 
used as the calculation ranges of the normalized dis-
tance. The result of the calculation range for each posi-
tion index is shown in Fig. 15. “Unrestricted” illustrated 
by the arrows contains the range of minimum to maxi-
mum values of the output distance d and tilt ϕ of all sen-
sors equipped with the relative position and orientation 
measurement device during HILS. On the other hand, 
“Restricted” illustrated by the rectangles of each color 
contains the minimum to maximum range of the output 
distance d and tilt ϕ of the sensor attached to each posi-
tion index shown as (1)–(8) in Figure  5 during HILS. It 
was found that distance d and tilt ϕ between the sensor 
and the object to be measured during platooning differed 
significantly depending on the position index.

As the range used to calculate the normalized distance 
for each position index is different, it is expected that the 
normalized distance and clustering results will vary for 
each position index. In this section, normalized distance 
calculation and clustering are performed for each sensor 
position index. As shown in Fig. 15, when the calculation 
range of the normalized distance is not restricted, the 
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calculation range is defined as the minimum-to-maxi-
mum value of the calculated distance d and tilt ϕ.

Result of sensor clustering using calculation range 
restriction
Normalized distances were calculated using the calcu-
lation range restriction for each position index (Fig. 15). 
The clustering conditions were the same as those 
described in the previous section. Unrestricted range 
indicated by the arrows includes all of the distance and 
tilt used when HILS. Restricted range indicated by bars 
illustrates the range of distance and tilt during HILS for 
each sensor position. A comparison of the number of 
clusters generated and the number of sensors in a clus-
ter with and without the calculation range restriction 
is shown in Fig.  16. The number of clusters generated 
tended to decrease with calculation range restriction. 
The number of clusters containing one or two fewer 
sensors decreased, whereas the number of clusters con-
taining eleven or more sensors increased.

The difference in the distribution of the normal-
ized distance, with and without the calculation range 
restriction, is shown in Fig.  17. The distribution with 
the calculation range restriction shows the results for 

position index (3) with the largest number of clusters, 
and position index (7) with the smallest number of 
clusters. The number of sensor pairs with normalized 
distances between 0 and 0.01 increased by a factor of 
approximately five. Owing to the characteristics of 
the infrared distance sensor, a large tilt ϕ of the object 
caused a larger sensor output error and affected the 
normalized distance calculation results. The calculation 
range restriction is believed to have increased the dis-
tribution of small normalized distances, and decreased 
the number of clusters because the output characteris-
tics for an unnecessarily large tilt ϕ are not used.

Adequate sensor selection method for platooning
The results of sensor clustering using the calcula-
tion range restriction suggest that it may be possible to 
select sensors that are more similar to each other for 
platooning.

Therefore, we proposed an adequate sensor selection 
method for platooning, as shown in Fig. 18. The adequate 
method uses a sensor with the shortest Euclidean dis-
tance from the reference sensor in the two-dimensional 
feature space of the normalized distance, with and with-
out restriction. The method is expected to select a sensor 
with a good balance measurement accuracy between the 
range frequently used in platoons and that in the entire 
ring.

Verification experiment for adequate sensor selection 
method
The training data generated by the reference sensor 
group were transferred to the adequate sensor group 
selected using the adequate sensor selection method, and 
the performance of the platoon was verified using HILS. 
The vehicle group using the reference sensor was the ref-
erence group. Similarly, the group of vehicles that used 
the adequate sensor group was designated as adequate 
(Adq.) group.

The number of successful platooning vehicles in 
each group is provided in Table  4. The adequate group 
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successfully ran all courses except for the circular opera-
tion. The trajectory of the pin in the ring, and the shaking 
of the pin during the platooning of follower 1 are shown 

in Fig. 19. The pin of follower 1 shaking in the adequate 
group increased than that of follower 1 in the reference 
group. In addition, as the pin trajectory diagram on the 
right side shows (Fig.  19), the pin moves near the apex 
of the ring. The cause of the failure of the platooning in 
the circular operation is the deviation of the path from 
that of the leader owing to the measurement error of 
the orientation θ . Fig. 20 is the path of each group while 
driving on the circular operation. The enlarged figure 
shows that follower 1 of the adequate group turns on the 
inside of the curve compared with follower 1 of the refer-
ence group (Fig. 20). Consequently, the pin moved near 
the apex of the ring and failed platooning. To maintain 
the platoon during circular operation, it is necessary to 
reduce the measurement error of the orientation θ and to 
drive on a trajectory close to that of the leader.

Even when the training data were transferred, platoon-
ing was successful in all courses except for the circular 
operation using the adequate sensor selection method for 
platoons. We showed that this method can select a sensor 
with similar output characteristics that are suitable for 
maintaining platooning. However, even with an adequate 
sensor group, path errors owing to measurement errors 
in the attitude θ axis caused a failure of platooning on the 
circular operation.

Conclusions
In this study, we proposed a sensor clustering method for 
the transfer of training data required for relative position 
and orientation measurement devices. We developed 
and evaluated a sensor output characteristic acquisition 
device that can acquire sensor outputs at high speed, 
and has high reproducibility and stability against sensor 
removal and position changes.

Sensor clustering was verified using HILS by transfer-
ring the training data to a relative position and orienta-
tion device consisting of similar sensors. Four followers 
were successful in the two courses. These results reveal 
that, by selecting similar sensors through sensor cluster-
ing, it is possible to use multiple inexpensive distance 
sensors without complicated calibration. There were tri-
als in which the four following vehicles could not be suc-
cessful on the other courses. This maybe owing to the 
inability to use a sensor with sufficient similarity to the 
relative position and orientation measurement device to 
maintain the platoon.

Next, we showed that the number of clusters gener-
ated by clustering decreased, and the number of sensors 
in each cluster increased when the calculation range of 
the normalized distance was restricted. Therefore, we 
proposed an adequate sensor selection method that con-
siders two features of the normalized distance with and 
without restriction. Platooning using the device with 
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Table 1  Number of successful platooning vehicles on 
experiment for deciding threshold

Course Group

Ref. G F P

Circular operation 4 1 0 3

Lane changing 4 3 2 1

Slaloming operation 4 4 0 1

Pulsed steering 4 4 2 2

Accelerated start 4 3 1 1
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sensors selected based on this method was success-
ful in various courses, even when the training data were 
transferred. It was demonstrated that the adequate sen-
sor selection method for platooning can be used to select 
sensors with similar output characteristics. As a result, 
the training data can be used repeatedly for newly manu-
factured relative position and orientation devices. The 
results suggest that sensor clustering has the potential to 
increase the efficiency of production for the relative posi-
tion and orientation measurement devices.

Furthermore, it was found that it is important to 
reduce the measurement error of orientation θ rather 
than positions x, y to maintain platooning. Future work 
will involve creating training data and applying an algo-
rithm to measure the relative position and orientation to 
reduce the measurement error of orientation θ.
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